Skip to main content

Advertisement

Log in

CO2 reduction reaction on double metal atoms doped nanocages (Sc2-Si44, V2-C58, V2-Al29N29, Ti2-Ge70 and Fe2-B40P40) as catalysts

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The catalytic activity of Vanadium, Scandium, Titanium and Ferrum (Sc, V, Ti and Fe) doped Carbon, Silicon, Germanium, Aluminum Nitride and Boron Phosphide (C60, Si46, Al30N30, Ge72 and B41P41) nanocages for reduction reaction of carbon dioxide are investigated. The ∆Ebinding of V2-C58, Sc2-Si44, V2-Al29N29, Ti2-Ge70 and Fe2-B40P40 nanocages are -5.90, -6.23, -6.13, -7.28 and -6.97 eV, respectively. The ∆Eformation of V2-C58, Sc2-Si44, V2-Al29N29, Ti2-Ge70 and Fe2-B40P40 nanocages are -4.54, -4.84, -4.76, -5.66 and -5.42 eV, respectively. The ∆Ebinding and ∆Eformation of double metal atoms doped nanocages are demonstrated that they are stable nano-structures. The rate-determining step for CH4 and CH3OH production is the catalyst-*CO → catalyst-*CHO on double metal atoms doped nanocages. The overpotential of CH3OH and CH4 production on Ti2-Ge70, Fe2-B40P40, V2-C58, V2-Al29N29 and Sc2-Si44 nanocages are 0.19 to 0.26 V and 0.18 to 0.24 V, respectively. The Sc2-Si44, V2-Al29N29, Ti2-Ge70 and Fe2-B40P40 can catalyze the CO2-RR with high efficiency. The double metal atoms doped nanocages (Ti2-Ge70, Fe2-B40P40, V2-C58, V2-Al29N29 and Sc2-Si44) can be considered as electro-catalysts for CH4 and CO3OH creation from CO2 reduction reaction.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

Not applicable

Code availability

Not applicable

References

  1. Zhu H, Huang J, Liao P, Chen X (2022) ACS Central Sci 8:1506–1517

    Article  CAS  Google Scholar 

  2. Yin H, Dong F, Wang D, Li J (2022) ACS Catal 12:14096–14105

    Article  CAS  Google Scholar 

  3. Dong H, Li Y, Jiang D (2018) J Phys Chem C 122:11392–11398

    Article  CAS  Google Scholar 

  4. Dong H, Liu C, Li Y, Jiang D (2019) Nanoscale 11:11351–11359

    Article  CAS  PubMed  Google Scholar 

  5. Kour G, Mao X, Du A (2020) J Phys Chem C 124(14):7708–7715

    Article  CAS  Google Scholar 

  6. Fang M, Ji Y, Pi Y, Wang P, Hu Z, Huang X (2022) Chem Materials 34:9023–9030

    Article  CAS  Google Scholar 

  7. Xu D, Sulivan I, Xiang C, Lin M (2022) ACS Sustainable Chem Eng 10:13945–13954

    Article  CAS  Google Scholar 

  8. Gao S, Chen S, Liu Q, Zhang S, Qi G, Appl ACS (2022) Nano Mat 5:12387–12394

    CAS  Google Scholar 

  9. Dong J, Cheng Y, Peng X, Zhang R, Appl ACS (2022) Mat Interfaces 14:41969–41977

    Article  CAS  Google Scholar 

  10. Brimley P, Almajed H, Alsunni Y, Alherz A (2022) ACS Catalysis 12:10161–10171

    Article  CAS  Google Scholar 

  11. Lei B, Cui W, Chen P, Chen L, Li J (2022) ACS Catalysis 12:9670–9678

    Article  CAS  Google Scholar 

  12. Deng L, Zhang G, Luo Q, Yang L, Jiang J (2022) J Phys Chem Lett 13:7043–7050

    Article  CAS  PubMed  Google Scholar 

  13. Zhao Q, Cai Q, Wang S, Sun Y, Zhou Q (2022) J Phys Chem C 126:7859–7869

    Article  CAS  Google Scholar 

  14. Wang J, Zheng M, Zhao X, Fan W (2022) ACS Catalysis 12:5441–5454

    Article  CAS  Google Scholar 

  15. Liu Y, Zhu H, Zhao Z, Huang N (2022) ACS Catalysis 12:2749–2755

    Article  Google Scholar 

  16. Long B, Zhao Y, Cao P, Wei W, Mo Y, Liu J (2022) Analytical Chem 94:1919–1924

    Article  CAS  Google Scholar 

  17. Yin J, Gao Z, Wei F, Liu C, Gong J, Li J (2022) ACS Catalysis 12:1004–1011

    Article  CAS  Google Scholar 

  18. Bhalothia D, Hsiung W, Yang S, Yan C, Appl ACS (2021) Energy Mat 4:14043–14058

    CAS  Google Scholar 

  19. Li S, Guan A, Yang C, Peng C, Lv X, Ji Y (2021) ACS Materials Lett 3:1729–1737

    Article  CAS  Google Scholar 

  20. Bo T, Wang X, Han L, Xin H, Zhang H (2021) J Phys Chem C 125:25525–25532

    Article  CAS  Google Scholar 

  21. Wang J, Zheng W, Ding L, Wang Y (2017) New J Chem 41:1346–1362

    Article  CAS  Google Scholar 

  22. Liao R, Chen S, Siegbahn P (2016) Chem A European J 22:12391–12399

    Article  CAS  Google Scholar 

  23. Spataru T, Fernandez F (2016) Chem J Moldova 11:10–20

    Article  CAS  Google Scholar 

  24. Kozlowski P, Garabato B, Jaworska M (2016) Dalton Trans 45:4457–4470

    Article  CAS  PubMed  Google Scholar 

  25. Garabato B, Jaworska M, Kozlski P (2016) Phys Chem Chem Phys 18:19070–19082

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Y, Truhlar DG (2006) J Comput Chem Theory Comput 2:1009–1018

    Article  CAS  Google Scholar 

  27. Becke D (1993) J Chem Phys 98:5648–5642

    Article  CAS  ADS  Google Scholar 

  28. Stephens PJ, Devlin FJ, Chablowski CF (1994) J Phys Chem 98:11623–11627

    Article  CAS  Google Scholar 

  29. Liu B, Li Y, Qing S, Wang K, Cao Y (2020) CrystEngComm 22:4005–4013

    Article  CAS  Google Scholar 

  30. Wang K, Liu B, Cao Y, Jia D (2018) CrystEngComm 20:5191–5199

    Article  CAS  Google Scholar 

  31. Wang K, Lu Z, Li Y, Cao Y (2020) ChemSusChem 13:5539–5548

    Article  PubMed  Google Scholar 

  32. Zuo W, Zuo L, Geng X, Wang L (2023) Organic Lett 25:6062–6066

    Article  CAS  Google Scholar 

  33. Yang X, Liu K, Han X, Xu J, Yang X (2023) J Hazardous Materials 459:132209

    Article  CAS  Google Scholar 

  34. Zhao Y, Dong Y, Chen X, Wang Z, Ni S (2023) Chem Eng J 475:146286

    Article  CAS  Google Scholar 

  35. Shi W, Zhang R, Li H, Toan S, Sun Z (2023) Adv.Energy Mat 13:2301920

    Article  CAS  Google Scholar 

  36. Sun Z, Yu S, Toan S, Abiev R, Sun Z (2023) ACS Catalysis 13:13704–13716

    Article  CAS  Google Scholar 

  37. Li H, Wu Y, Xu Z, Wang Y (2024) Chem. Eng. J. 479:147508

    Article  CAS  Google Scholar 

  38. Chen D, Wang Q, Li Y, Li Y, Fan Y (2020) Chemosphere 247:125869

    Article  CAS  PubMed  Google Scholar 

  39. Tang T, Zhou M, Lv J, Cheng H, Liu X (2022) Colloids Surf B 216:112538

    Article  CAS  Google Scholar 

  40. Li H, Wang Y, Jiang F, Xu Z (2023) Dalton Transactions 52:3846–3854

    Article  CAS  PubMed  Google Scholar 

  41. Zheng Y, Liu Y, Guo X, Zhao Y (2020) J Materials Sci Technol 41:117–126

    Article  CAS  Google Scholar 

  42. Kong L, Liu Y, Dong L, Zhang L, You H (2020) Dalton Trans 49:1947–1954

    Article  CAS  PubMed  Google Scholar 

  43. W. Ma Research Posters. Columbus, Ohio, USA. ASME, 2022, 1, V009T12A020.

  44. Gu Y (2023) G Zheng Proc 11:561

    CAS  Google Scholar 

  45. Zhou H, Yang C, Sun Y (2020) IEEE Access, 8:177570-177579

  46. Yu JX, Chen DT, Gu J, Chen J, Cheng HP (2020) Phys Rev Lett 124:227201

  47. Yu Y, Zhang X, Dillon S, Chen J, Zhang XG (2022) J Phys Chem Solids 171:111000

  48. Xiong S, Lv W, Xiong X, Liu D, Li X (2023) Emergency Managtm. Sci. Technol 3:3

  49. Otifi H, Alshyarba M, Fayi M. Dera A, Rajagopalan P (2021) Oncol Res 29:217-227

  50. Yao J, Li C, Sun K, Cai Y, Li H (2023) IEEE/CVF Int. Conference Comp. Vision 2023 1:9455-9465

  51. Kong Z, Zhang P, Chen J, Zhou H, Ma X, Liang LJ (2021) ACS Omega 6:10936–10943

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Cui RF, Chen QH, Chen JX (2020) Nanoscale 12:12275–12280

    Article  CAS  PubMed  Google Scholar 

  53. Li L, Xu W, Tan Y, Yang J, Tan D (2023) Mechanical Syst Signal Proc 189:110058

    Article  Google Scholar 

  54. Li P, Abbas J, Wang Q, Zhang Q, Shah SAR (2024) Gondwana Res 128:86–105

    Article  CAS  ADS  Google Scholar 

  55. Huang J, Cho Y, Zhang Z, Jan A (2022) ACS Appl Mat Interf 14:15716–15727

    Article  CAS  Google Scholar 

  56. Cho Y, Huang J, Ahles CF, Zhang Z, Wong K (2022) Appl Sur Sci 600:154010

    Article  CAS  Google Scholar 

  57. Jiao Y, Gu L, Jiang Y, Weng M, Yang M (2023) Bioinformatics 39:btac719

  58. Jiao Y, Xie N, Gao Y, Wang CC, Sun Y (2022) Eur Conference Comput Vision 1:19–35

    Google Scholar 

  59. Jiao Y, Weng M, Yang M (2019) IEEE/CVF Conference Comp. Pattern Recog 1:1–10

    CAS  Google Scholar 

  60. Kazemi M (2023) Nanomaterials Chem 1:1–11

    Google Scholar 

Download references

Acknowledgment

The authors are thankful to the Deanship of Scientific Research, King Khalid University, Abha, Saudi Arabia, for financially supporting this work through the Large Research Group Project under Grant no. R.G.P.2/557/44.

Funding

Not applicable

Author information

Authors and Affiliations

Authors

Contributions

Mohamed J. Saadh: Conceptualization, Methodology, Software, Mohammed Abdulkadhim Sayah: Formal analysis, Investigation Resources, Ahmed Abd Al-Sattar Dawood: Software, Validation, Writing - Original Draft, Abdul-hameed. M. Hamoody: Writing - Original Draft, Writing - Review & Editing, Zainab Jamal Hamoodah: Validation, Formal analysis, Investigation Resources, Montather F. Ramadan: Writing - Review & Editing, Visualization. Data Curation, Hussein Abdullah Abbas: Validation, Formal analysis, Investigation Resources, Irfan Ahmad: Validation, Validation, Formal analysis, Ali Alsalamy: Conceptualization, Methodology, Software, Visualization, Rathab Abbass; Conceptualization, Methodology, Data Curation, Software.

Corresponding author

Correspondence to Irfan Ahmad.

Ethics declarations

Competing interests

The authors declare no competing interests.

Conflicts of interest/Competing interests

Not applicable

Consent to participate

I confirmed

Consent for publication

I confirmed

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saadh, M.J., Sayah, M.A., Dawood, A.A.AS. et al. CO2 reduction reaction on double metal atoms doped nanocages (Sc2-Si44, V2-C58, V2-Al29N29, Ti2-Ge70 and Fe2-B40P40) as catalysts. Silicon (2024). https://doi.org/10.1007/s12633-024-02930-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12633-024-02930-z

Keywords

Navigation