Skip to main content
Log in

Silicon Application Enhances Sugarcane Growth by Impairing the Development of Larval Sugarcane Borer

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Sugarcane borer, Diatraea saccharalis, is one of the main insect pests of sugarcane fields, and it has been mainly managed by the use of chemical or biological controls. Considering the benefits of Silicon (Si) fertilization against pests, it was assessed the development of sugarcane borer larvae and sugarcane growth with and without Si. A greenhouse experiment was conducted using a factorial design (2 × 2) with 10 repetitions. Two commercial sugarcane varieties were evaluated: SP80-3280 and IAC91-1099, which have, respectively, susceptibility, and intermediate resistance to D. saccharalis. Si was applied in soil in an equivalent rate of 800 kg of Si ha−1. Before herbivory, Si increased stalk diameter and plant height in both varieties, and number of leaves and leaf width were only increased in IAC91-1099. After 20 days of herbivory, Si increased stalk diameter in both varieties and plant height in IAC91-1099, but decreased the number of leaves and leaf width in SP80-3280. Larval D. saccharalis showed a reduced weight and a greater index for mandible abrasion after feeding Si-treated plants independently of variety. No influence of Si-treated plants was found in immunological parameters of larvae (total number of hemocytes, cell viability, encapsulation capability, lysozyme active). The activity of phenol oxidase, an immunological and stress marker for insects, was greater in larval D. saccharalis fed with IAC 91-1099, independently of Si. In conclusion, Si application improved sugarcane growth of IAC91-1099 and impaired the development of larval D. saccharalis in both sugarcane varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Dinardo-Miranda LL, Fracasso JV, Perecin D (2011) Variabilidade espacial de populações de Diatraea saccharalis em canaviais e sugestão de métodos de amostragem. Bragantia 70:577–585. https://doi.org/10.1590/S0006-87052011005000008

    Article  Google Scholar 

  2. Borges Filho RC, Sturza VS, Bernardi D, Cunha US, Pinto AS, Silva SDDA, Nava DE (2019) Population dynamics of pests and natural enemies on sugar cane grown in a subtropical region of Brazil. Fla Entomol 102:526–530. https://doi.org/10.1653/024.102.0313

    Article  Google Scholar 

  3. Wilson BE, White WH, Richard RT, Johnson RM (2020) Population trends of the sugarcane borer (Lepidoptera: Crambidae) in Louisiana sugarcane. Environ Entomol 49:1455–1461. https://doi.org/10.1093/ee/nvaa127

    Article  CAS  PubMed  Google Scholar 

  4. Cheavegatti-Gianotto A, De Abreu HMC, Arruda P, Bespalhok Filho JC, Burnquist WL, Creste S, Di Ciero L, Ferro JA, Figueira AVO, Filgueiras TS, Grossi-de-Sá MF, Guzzo EC, Hoffmann HP, Landell MGA, Macedo N, Matsuoka S, Reinach FC, Romano E, Silva WJ, Silva-Filho MC, Ulian EC (2011) Sugarcane (Saccharum X officinarum): a reference study for the regulation of genetically modified cultivars in Brazil. Trop Plant Biol 4:62–89. https://doi.org/10.1007/s12042-011-9068-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Dinardo-Miranda LL, Fracasso JV, Costa VPD, Anjos IAD, Lopes DOP (2013) Reação de cultivares de cana-de-açúcar à broca do colmo. Bragantia 72:29–34. https://doi.org/10.1590/S0006-87052013005000012

    Article  Google Scholar 

  6. Wilson BE (2021) Successful integrated pest management minimizes the economic impact of Diatraea saccharalis (Lepidoptera: Crambidae) on the Louisiana sugarcane industry. J Econ Entomol 114:468–471. https://doi.org/10.1093/jee/toaa246

    Article  CAS  PubMed  Google Scholar 

  7. Parra JRP, Coelho A Jr (2022) Insect rearing techniques for biological control programs, a component of sustainable agriculture in Brazil. Insects 13:105. https://doi.org/10.3390/insects13010105

    Article  PubMed  PubMed Central  Google Scholar 

  8. Oliveira WS, Sakuno CIR, Miraldo LL, Tavares MAG, Komada KM, Teresani D, Santos JLX, Huang F (2022) Varied frequencies of resistance alleles to Cry1Ab and Cry1Ac among brazilian populations of the sugarcane borer, Diatraea saccharalis (F). Pest Manag Sci 78:5150–5163. https://doi.org/10.1002/ps.7133

    Article  CAS  PubMed  Google Scholar 

  9. Wartha CA, Porto NA, Tomaz AC, Roque JV, Diniz MBT, Queiroz MELR, Teófilo RF, Barbosa MHP (2022) Classification of sugarcane genotypes susceptible and resistant to the initial attack of sugarcane borer Diatraea saccharalis using epicuticular wax composition. Phytochemistry 199:113175. https://doi.org/10.1016/j.phytochem.2022.113175

    Article  CAS  PubMed  Google Scholar 

  10. Wilson BE, Salgado LD, Villegas JM (2022) Optimizing chemical control for Diatraea saccharalis (Lepidoptera: Crambidae) in sugarcane. Crop Prot 152:105843. https://doi.org/10.1016/j.cropro.2021.105843

    Article  CAS  Google Scholar 

  11. Parra JRP, Zucchi AR (2004) Trichogramma in Brazil: feasibility of use after twenty years of research. Neotrop Entomol 33:271–281. https://doi.org/10.1590/S1519-566X2004000300001

    Article  Google Scholar 

  12. Fernandes FL, Picanço MC, Campos SO, Bastos CS, Chediak M, Guedes RNC, Silva R (2011) Economic injury level for the coffee berry borer (Coleoptera: Curculionidae: Scolytinae) using attractive traps in brazilian coffee fields. J Econ Entomol 104:1909–1917. https://doi.org/10.1603/EC11032

    Article  CAS  PubMed  Google Scholar 

  13. Brewer MJ, Anderson DJ, Armstrong JS (2013) Plant growth stage-specific injury and economic injury level for verde plant bug, Creontiades signatus (Hemiptera: Miridae), on cotton: effect of bloom period of infestation. J Econ Entomol 106:2077–2083. https://doi.org/10.1603/EC13248

    Article  PubMed  Google Scholar 

  14. Ramsden MW, Kendall SL, Ellis SA, Berry PM (2017) A review of economic thresholds for invertebrate pests in UK arable crops. Crop Prot 96:30–43. https://doi.org/10.1016/j.cropro.2017.01.009

    Article  Google Scholar 

  15. Keeping MG, Meyer JH (2006) Silicon-mediated resistance of sugarcane to Eldana saccharina Walker (Lepidoptera: Pyralidae): effects of silicon source and cultivar. J Appl Entomol 130:410–420. https://doi.org/10.1111/j.1439-0418.2006.01081.x

    Article  CAS  Google Scholar 

  16. Keeping MG, Kvedaras OL, Bruton AG (2009) Epidermal silicon in sugarcane: cultivar differences and role in resistance to sugarcane borer Eldana saccharina. Environ Exp Bot 66:54–60. https://doi.org/10.1016/j.envexpbot.2008.12.012

    Article  CAS  Google Scholar 

  17. Keeping MG, Meyer JH, Sewpersad C (2013) Soil silicon amendments increase resistance of sugarcane to stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) under field conditions. Plant Soil 363:297–318. https://doi.org/10.1007/s11104-012-1325-1

    Article  CAS  Google Scholar 

  18. Camargo MS, Bezerra BKL, Vitti AC, Silva MA, Oliveira AL (2017) Silicon fertilization reduces the deleterious effects of water deficit in sugarcane. J Soil Sci Plant Nutr 17:99–111. https://doi.org/10.4067/S0718-95162017005000008

    Article  Google Scholar 

  19. Camargo MS, Coutinho ID, Lourenço SA, Soares MKM, Colnago LA, Appezzato-da-Glória B, Cavalheiro JA, Amorim L (2020) Potential prophylactic role of silicon against brown rust (Puccinia melanocephala) in sugarcane. Eur J Plant Pathol 157:77–88. https://doi.org/10.1007/s10658-020-01982-2

    Article  CAS  Google Scholar 

  20. Teixeira GCM, Prado RM, Rocha MAS, Santos LCN, Sarah MMS, Gratão PL, Fernandes C (2020) Silicon in pre-sprouted sugarcane seedlings mitigates the effects of water deficit after transplanting. J Soil Sci Plant Nutr 20:849–859. https://doi.org/10.1007/s42729-019-00170-4

    Article  CAS  Google Scholar 

  21. Keeping MG, Meyer JH (2002) Calcium silicate enhances resistance of sugarcane to the african stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) Agri. For Entomol 4:265–274. https://doi.org/10.1046/j.1461-9563.2002.00150.x

    Article  Google Scholar 

  22. Korndorfer AP (2010) Efeito do silício na indução de resistência à cigarrinha-das-raízes Mahanarva fimbriolata Stål (Hemiptera: Cercopidae) em cultivares de cana-de-açúcar (Doctoral dissertation, Universidade de São Paulo)

  23. Camargo MS, Korndörfer GH, Wyler P (2014) Silicate fertilization of sugarcane cultivated in tropical soils. Field Crop Res 167:64–75. https://doi.org/10.1016/j.fcr.2014.07.009

    Article  Google Scholar 

  24. Sousa ACG, Souza BHS, Marchiori PER, Bôas LVV (2022) Characterization of priming, induced resistance, and tolerance to Spodoptera frugiperda by silicon fertilization in maize genotypes. J Pest Sci 95:1387–1400. https://doi.org/10.1007/s10340-021-01468-y

    Article  CAS  Google Scholar 

  25. Islam T, Moore BD, Johnson SN (2023) Silicon fertilization affects morphological and immune defences of an insect pest and enhances plant compensatory growth. J Pest Sci 41 – 33. https://doi.org/10.1007/s10340-022-01478-4

  26. Negreiro MCC, Andrade FG, Falleiros ÂMF (2004) Immunology defense system in insects: an approach in velvetbean catterpillar, Anticarsia gemmatalis Hübner (Lepidoptera: Noctuidae), AgMNPV-resistant. Semina: Ciênc Agrár 25:299–313

    Google Scholar 

  27. Pinto CPG, Azevedo EB, Dos Santos ALZ, Cardoso CP, Fernandes FO, Rossi GD, Polanczyk RA (2019) Immune response and susceptibility to Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to and surviving an LC25 dosage of Bacillus thuringiensis. J Invertebr Pathol 166:107209. https://doi.org/10.1016/j.jip.2019.107209

    Article  CAS  PubMed  Google Scholar 

  28. Santos ALZ, Pinto CPG, Fonseca SS, Azevedo EB, Polanczyk RA, Rossi GD (2022) Immune interactions, risk assessment and compatibility of the endoparasitoid Cotesia flavipes parasitizing Diatraea saccharalis larvae exposed to two entomopathogenic fungi. Biol Control 166:104836. https://doi.org/10.1016/j.biocontrol.2022.104836

    Article  CAS  Google Scholar 

  29. Vogelweith F, Moret Y, Monceau K, Thiéry D, Moreau J (2016) The relative abundance of hemocyte types in a polyphagous moth larva depends on diet. J Insect Physiol 88:33–39. https://doi.org/10.1016/j.jinsphys.2016.02.010

    Article  CAS  PubMed  Google Scholar 

  30. Wilson JK, Ruiz L, Davidowitz G (2019) Dietary protein and carbohydrates affect immune function and performance in a specialist herbivore insect (Manduca sexta). Physiol Biochem Zool 92:58–70. https://doi.org/10.1086/701196

    Article  PubMed  Google Scholar 

  31. Braga DP, Arrigoni ED, Silva-Filho MC, Ulian EC (2003) Expression of the Cry1Ab protein in genetically modified sugarcane for the control of Diatraea saccharalis (Lepidoptera: Crambidae). J New Seeds 5:209–221. https://doi.org/10.1300/J153v05n02_07

    Article  Google Scholar 

  32. Souza GM, Van Sluys MA, Lembke CG, Lee H, Margarido GRA, Hotta CT, Gaiarsa JW, Diniz AL, Oliveira MM, Ferreira SS, Nishiyama MY, Ten-Caten F, Ragagnin GT, Andrade PM, Souza RF, Nicastro GG, Pandya R, Kim C, Guo H, Durham AM, Carneiro MS, Zhang J, Zhang X, Zhang Q, Ming R, Schatz MC, Davidson B, Paterson AH, Heckerman D (2019) Assembly of the 373k gene space of the polyploid sugarcane genome reveals reservoirs of functional diversity in the world’s leading biomass crop. GigaScience 8:129. https://doi.org/10.1093/gigascience/giz129

    Article  CAS  Google Scholar 

  33. Mello US, Vidigal PMP, Vital CE, Tomaz AC, Figueiredo M, Peternelli LA, Barbosa MHP (2020) An overview of the transcriptional responses of two tolerant and susceptible sugarcane cultivars to borer (Diatraea saccharalis) infestation. Funct Integr Genomics 20:839–855. https://doi.org/10.1007/s10142-020-00755-8

    Article  CAS  PubMed  Google Scholar 

  34. Raij B, Cantarella H, Quaggio JÁ, Furlani AMC (1997) Boletim Técnico, 100. Recomendações de adubação e calagem para o Estado de São Paulo. Instituto Agronômico/Fundação IAC, Campinas, p 285

    Google Scholar 

  35. Camargo MS, Bozza NG, Pereira HS, Silva VM, Silva MA (2020) Increase in silicate fertilization improves the biomass of drought-tolerant contrasting cultivars without prejudicial effects in nutrient uptake in sugarcane. J Soil Sci Plant Nutr 20:2329–2337. https://doi.org/10.1007/s42729-020-00300-3

    Article  CAS  Google Scholar 

  36. Hensley SD, Hammond AM Jr (1968) Laboratory techniques for rearing the sugarcane borer on an artificial diet. J Econ Entomol 61:1742–1743. https://doi.org/10.1093/jee/61.6.1742

    Article  Google Scholar 

  37. Massey FP, Hartley SE (2009) Physical defences wear you down: progressive and irreversible impacts of silica on insect herbivores. J Anim Ecol 78:281–291. https://doi.org/10.1111/j.1365-2656.2008.01472.x

    Article  PubMed  Google Scholar 

  38. Thayappan K, Denis M, Ramasamy SM, Munusamy A (2017) Hemocytes and hemocytic responses in the mole crab Emerita emeritus (Linnaeus 1767). J Invertebr Pathol 148:129–137. https://doi.org/10.1016/j.jip.2017.06.011

    Article  CAS  PubMed  Google Scholar 

  39. Pinto CP, Walker AA, Robinson SD, King GF, Rossi GD (2022) Proteotranscriptomics reveals the secretory dynamics of teratocytes, regulators of parasitization by an endoparasitoid wasp. J Insect Physiol 139:104395. https://doi.org/10.1016/j.jinsphys.2022.104395

    Article  CAS  PubMed  Google Scholar 

  40. Zhang Z, Ye GY, Cai J, Hu C (2005) Comparative venom toxicity between Pteromalus puparum and Nasonia vitripennis (Hymenoptera: Pteromalidae) toward the hemocytes of their natural hosts, non-target insects and cultured insect cells. Toxicon 46:337–349. https://doi.org/10.1016/j.toxicon.2005.05.005

    Article  CAS  PubMed  Google Scholar 

  41. Wu ML, Ye GY, Zhu JY, Chen XX, Hu C (2008) Isolation and characterization of an immunosuppressive protein from venom of the pupa-specific endoparasitoid Pteromalus puparum. J Invertebr Pathol 99:186–191. https://doi.org/10.1016/j.jip.2008.07.005

    Article  CAS  PubMed  Google Scholar 

  42. Teng ZW, Xu G, Gan SY, Chen X, Fang Q, Ye GY (2016) Effects of the endoparasitoid Cotesia chilonis (Hymenoptera: Braconidae) parasitism, venom, and calyx fluid on cellular and humoral immunity of its host Chilo suppressalis (Lepidoptera: Crambidae) larvae. J Insect Physiol 85:46–56. https://doi.org/10.1016/j.jinsphys.2015.11.014

    Article  CAS  PubMed  Google Scholar 

  43. Li LF, Xu ZW, Liu NY, Wu GX, Ren XM, Zhu JY (2018) Parasitism and venom of ectoparasitoid Scleroderma guani impairs host cellular immunity. Arch Insect Biochem Physiol 98:e21451. https://doi.org/10.1002/arch.21451

    Article  CAS  PubMed  Google Scholar 

  44. Pinto CP, Walker AA, Robinson SD, Chin YKY, King GF, Rossi GD (2021) Venom composition of the endoparasitoid wasp Cotesia flavipes (Hymenoptera: Braconidae) and functional characterization of a major venom peptide. Toxicon 202:1–12. https://doi.org/10.1016/j.toxicon.2021.09.002

    Article  CAS  PubMed  Google Scholar 

  45. R Core Team (2020) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna. https://www.R-project.org/

  46. Verma KK, Singh P, Song XP, Malviya MK, Singh RK, Chen GL, Solomon S, Li YR (2020) Mitigating climate change for sugarcane improvement: role of silicon in alleviating abiotic stresses. Sugar Tech 22:741–749. https://doi.org/10.1007/s12355-020-00831-0

    Article  CAS  Google Scholar 

  47. Tayade R, Ghimire A, Khan W, Lay L, Attipoe JQ, Kim Y (2022) Silicon as a smart fertilizer for sustainability and crop improvement. Biomolecules 12:1027. https://doi.org/10.3390/biom12081027

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: a review. J Plant Nutr 22:1853–1903. https://doi.org/10.1080/01904169909365761

    Article  CAS  Google Scholar 

  49. Bokhtiar SM, Huang HR, Li YR, Dalvi VA (2012) Effects of silicon on yield contributing parameters and its accumulation in abaxial epidermis of sugarcane leaf blades using energy dispersive x-ray analysis. J Plant Nutr 35:1255–1275. https://doi.org/10.1080/01904167.2012.676379

    Article  CAS  Google Scholar 

  50. Van Oosten MJ, Pepe O, De Pascale S, Silletti S, Maggio A (2017) The role of biostimulants and bioeffectors as alleviators of abiotic stress in crop plants. Chem Biol Technol Agric 4:1–12. https://doi.org/10.1186/s40538-017-0089-5

    Article  CAS  Google Scholar 

  51. Pryia, Kumar R, Singh D (2023) Silicon uptake and accumulation in sugarcane for resistance against top borer Scirpophaga excerptalis Walker and its influence on larval mandibles. Silicon 1–17. https://doi.org/10.1007/s12633-023-02479-3

  52. Tomaz AC, Gonçalves MTV, Wartha CA, Papini NF, De Barros AF, Barbosa MHP (2021) Genetic and silicon-induced resistance of sugarcane to Diatraea saccharalis (Lepidoptera: Crambidae) and silicon effect on nutrient accumulation. Phytoparasitica 1–10. https://doi.org/10.1007/s12600-021-00960-6

  53. Johnson SN, Reynolds OL, Gurr GM, Esveld JL, Moore BD, Tory GJ, Gherlenda AN (2019) When resistance is futile, tolerate instead: silicon promotes plant compensatory growth when attacked by above-and belowground herbivores. Biol Lett 15:20190361. https://doi.org/10.1098/rsbl.2019.0361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Reynolds OL, Padula MP, Zeng R, Gurr GM (2016) Silicon: potential to promote direct and indirect effects on plant defense against arthropod pests in agriculture. Front Plant Sci 7:744. https://doi.org/10.3389/fpls.2016.00744

    Article  PubMed  PubMed Central  Google Scholar 

  55. Nikpay A, Nejadian ES, Goldasteh S, Farazmand H (2017) Efficacy of silicon formulations on sugarcane stalk borers, quality characteristics and parasitism rate on five commercial varieties. Proc Nat Acad Sci India Sect B-Biol Sci 87:289–297. https://doi.org/10.1007/s40011-015-0596-8

    Article  CAS  Google Scholar 

  56. Rahman A, Wallis CM, Uddin W (2015) Silicon-induced systemic defense responses in perennial ryegrass against infection by Magnaporthe oryzae. Phytopathology 105:748–757. https://doi.org/10.1094/PHYTO-12-14-0378-R

    Article  CAS  PubMed  Google Scholar 

  57. Atencio R, Goebel FR, Guerra A (2019) Effect of silicon and nitrogen on Diatraea tabernella Dyar in sugarcane in Panama. Sugar Tech 21:113–121. https://doi.org/10.1007/s12355-018-0634-y

    Article  CAS  Google Scholar 

  58. Massey FP, Ennos AR, Hartley SE (2006) Silica in grasses as a defence against insect herbivores: contrasting effects on folivores and a phloem feeder. J Anim Ecol 75:595–603

    Article  PubMed  Google Scholar 

  59. Vilela M, Moraes JC, Alves E, Santos-Cividanes TM, Santos FA (2014) Induced resistance to Diatraea saccharalis (Lepidoptera: Crambidae) via silicon application in sugarcane. Rev Colomb Entomol 40:44–48

    Google Scholar 

  60. Camargo MS, Keeping MG (2021) Silicon in sugarcane: availability in soil, fertilization, and uptake. SILICON 13:3691–3701. https://doi.org/10.1007/s12633-020-00935-y

    Article  CAS  Google Scholar 

  61. Goussain MM, Moraes JC, Carvalho JG, Nogueira NL, Rossi ML (2002) Efeito da aplicação de silício em plantas de milho no desenvolvimento biológico da lagarta-do-cartucho Spodoptera frugiperda (JE Smith) (Lepidoptera: Noctuidae). Neotrop Entomol 31:305–310. https://doi.org/10.1590/S1519-566X2002000200019

    Article  CAS  Google Scholar 

  62. Nascimento AM, Assis FA, Moraes JC, Souza BHS (2017) Silicon application promotes rice growth and negatively affects development of Spodoptera frugiperda (JE Smith). J Appl Entomol 142:241–249. https://doi.org/10.1111/jen.12461

    Article  CAS  Google Scholar 

  63. Priya, Kumar R (2023) Silicon quantification in sugarcane plants mediated defence against early shoot borer, Chilo infuscatellus and its effect on larval mandibles, yield and quality attributing parameters. Silicon 1–19. https://doi.org/10.1007/s12633-023-02345-2

  64. Kvedaras OL, Keeping MG (2007) Silicon impedes stalk penetration by the borer Eldana saccharina in sugarcane. Entomol Exp Appl 125:103–110. https://doi.org/10.1111/j.1570-7458.2007.00604.x

    Article  CAS  Google Scholar 

  65. Santos-Cividanes TM, Cividanes FJ, Garcia JC, Vilela M, Moraes JC, Barbosa JC (2022) Silicon induces resistance to Diatraea saccharalis in sugarcane and it is compatible with the biological control agent Cotesia flavipes. J Pest Sci 95:783–795. https://doi.org/10.1007/s10340-021-01429-5

    Article  CAS  Google Scholar 

  66. Frew A, Powell JR, Hiltpold I, Allsopp PG, Sallam N, Johnson SN (2017) Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Soil Biol Biochem 112:117–126. https://doi.org/10.1016/j.soilbio.2017.05.008

    Article  CAS  Google Scholar 

  67. Cotter SC, Myatt JP, Benskin CMH, Wilson K (2008) Selection for cuticular melanism reveals immune function and life-history trade‐offs in Spodoptera littoralis. J Evol Biol 21:1744–1754. https://doi.org/10.1111/j.1420-9101.2008.01587.x

    Article  CAS  PubMed  Google Scholar 

  68. Yang S, Ruuhola T, Rantala MJ (2007) Impact of starvation on immune defense and other life-history traits of an outbreaking geometrid, Epirrita autumnata: a possible causal trigger for the crash phase of population cycle. In: Annales Zoologici Fennici. Finnish Zoological and Botanical Publishing Board. 89–96. https://www.jstor.org/stable/23736721

  69. González-Santoyo I, Córdoba‐Aguilar A (2012) Phenoloxidase: a key component of the insect immune system. Entomol Exp Appl 142:1–16. https://doi.org/10.1111/j.1570-7458.2011.01187.x

    Article  CAS  Google Scholar 

  70. Garvey M, Bredlau J, Kester K, Creighton C, Kaplan I (2021) Toxin or medication? Immunotherapeutic effects of nicotine on a specialist caterpillar. Funct Ecol 35:614–626. https://doi.org/10.1111/1365-2435.13743

    Article  Google Scholar 

Download references

Acknowledgements

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001 (scholarship to the first author) and by Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (17/25258-1) (financial support to sixth author).

Funding

Fundação de Amparo à Pesquisa do Estado de São Paulo - FAPESP (17/25258-1).

Author information

Authors and Affiliations

Authors

Contributions

A.C.G.S. planned, designed, and carried out the experiments, analyzed and interpreted the data, and was responsible for the manuscript preparation, C.P.G.P., A.L.Z.S., and S.S.F. carried out the experiment, and took the biometric measurements, and contributed to writing the latest version of the manuscript, M.S.C. and G.D.R. planned, designed, interpreted the data, and contributed to writing the manuscript.

Corresponding authors

Correspondence to Mônica Sartori Camargo or Guilherme Duarte Rossi.

Ethics declarations

Research Involving Human Participants and or Animals

The authors declare this study does not contain studies with human participants or animals.

Consent to Participate

All authors give their consent for participate of this paper.

Consent for Publication

All authors give their consent for submission and publishing this paper.

Competing Interests

The authors declare no competing interests.

Conflict of Interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 67.1 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, A.C.G., Pinto, C.P.G., dos Santos, A.L.Z. et al. Silicon Application Enhances Sugarcane Growth by Impairing the Development of Larval Sugarcane Borer. Silicon 16, 741–751 (2024). https://doi.org/10.1007/s12633-023-02719-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02719-6

Keywords

Navigation