Skip to main content
Log in

Silicon in Sugarcane: Availability in Soil, Fertilization, and Uptake

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

Silicon (Si) is the predominant element in soils, but is usually sparingly soluble and limited in its availability for plant uptake. Although Si is not a nutrient, Si fertilization may be necessary in weathered soils where Si is depleted to obtain increased yield, especially for Si-accumulating plants such as sugarcane. The multiple harvest of sugarcane crops in such soils may lead to Si depletion over time if Si supplementation is not practiced. However, there is a lack of information about soils type and Si concentrations in soils with positive responses to Si fertilization.

Methods

Advances in methods of analysis of Si in soil and plants and their implementation in future studies can improve our understanding of the dynamics of Si in soil-sugarcane systems. Additionally, the responses to Si fertilization require further investigation in sugarcane, which is planted in tropical and sub-tropical regions of the world where soils are strongly weathered and Si-depleted.

Results

Here, we review our current state of knowledge on Si solubility, availability for plant uptake, responses to Si fertilization, and its uptake in sugarcane.

Conclusions

This paper summarized outcomes from early and recent research on Si in sugarcane, with a view to improving yields through appropriate Si nutrition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. McKeague JA, Cline MG (1963) Silica in soils. Adv Agron 15:339–397. https://doi.org/10.1016/S0065-2113(08)60403-4

    Article  Google Scholar 

  2. Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1239. https://doi.org/10.1016/0016-7037(95)00038-2

    Article  CAS  Google Scholar 

  3. Sauer D, Saccone L, Conley DJ, Herrmann L, Sommer M (2006) Review of methodologies for extracting plant-available and amorphous Si from soils and aquatic sediments. Biogeochem 80:89–108. https://doi.org/10.1007/s10533-005-5879-3

    Article  CAS  Google Scholar 

  4. Savant NK, Korndörfer GH, Datnoff LE, Snyder GH (1999) Silicon nutrition and sugarcane production: A review. J Plant Nutr 22:1853–1903. https://doi.org/10.1080/01904169909365761

    Article  CAS  Google Scholar 

  5. Tubana BS, Heckman JR (2015) Silicon in Soils and Plants. In: Rodrigues FA, Datnoff LE (eds) 2015 Silicon and Plant Diseases. Springer International Publishing, Switzerland, pp 7–51

    Chapter  Google Scholar 

  6. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x

    Article  CAS  Google Scholar 

  7. Babu T, Tubana BS, Datnoff LE, Dupree P, White B (2018) Survey of the plant-available silicon status of agricultural soils in Louisiana. J Plant Nutr 41:273–287. https://doi.org/10.1080/01904167.2017.1346668

    Article  CAS  Google Scholar 

  8. Berthelsen S, Korndorfer GH (2005) Methods for Si analysis in plant, soil and fertilizers. In: Korndorfer GH, Coelho L, Nolla A, Rodrigues FA (eds) III Silicon in Agriculture Conference, Universidade Federal de Uberlândia, Uberlândia, pp 85–91

  9. Berthelsen S, Noble AD, Garside AL (2001) Silicon research down under: Past, present, and future. In: L.E. Datnoff, G.H. Snyder, G.H. Korndörfer (eds) Silicon in Agriculture, Elsevier Science, The Netherland, pp 241–256

  10. Haynes RJ (2014) A contemporary overview of silicon availability in agricultural soils. J Plant Nutr Soil Sci 177:831–84. https://doi.org/10.1002/jpln.201400202

    Article  CAS  Google Scholar 

  11. Haynes RJ (2017) Significance and role of Si in crop production. Adv Agron 46:83–166. https://doi.org/10.1016/bs.agron.2017.06.001

    Article  Google Scholar 

  12. Tubana BS, Babu T, Datnoff LE (2016) A review of silicon in soils and plants and its role in US agriculture: history and future perspectives. Soil Sci 181:393–411. https://doi.org/10.1097/SS.0000000000000179

    Article  CAS  Google Scholar 

  13. Meyer JH, Keeping MG (2000) Review of research into the role of silicon for sugarcane production. Proc S Agr Sug Technol Ass 74:29–40

    Google Scholar 

  14. Meyer JH, Keeping MG (2001) Past, present and future research of the role of silicon for sugarcane in southern Africa. In: Datnoff LE, Snyder GH, Korndörfer GH (eds) Silicon in Agriculture. Elsevier, Amsterdam, pp 257–275

    Chapter  Google Scholar 

  15. Majumdar S, Prakash NB (2020) An overview on the potential of silicon in promoting defence against biotic and abiotic stresses in sugarcane. J Soil Sci Plant Anal. https://doi.org/10.1007/s42729-020-00269-z

    Article  Google Scholar 

  16. Boaretto LF, Carvalho G, Borgo L, Creste L, Landell MGA, Mazzafera P, Azevedo RA (2014) Water stress reveals differential antioxidant responses of tolerant and non-tolerant sugarcane genotypes. Plant Physiol Biochem 74:165–175. https://doi.org/10.1016/j.plaphy.2013.11.016

    Article  CAS  PubMed  Google Scholar 

  17. Ferreira THS, Tsunada MS, Bassi D, Araújo P, Mattiello L, Guidelli GV, Righetto GL, Gonçalves VR, Lakshmanan P, Menossi M (2017) Sugarcane water stress tolerance mechanisms and its implications on developing biotechnology solutions. Front Plant Sci 8:1–18. https://doi.org/10.3389/fpls.2017.01077

    Article  Google Scholar 

  18. Berthelsen S, Noble AD, Garside AL (1999) An assessment of soil and plant levels in north Queensland. Proc Aust Soc Sugar Cane Technol 21:92–100

    Google Scholar 

  19. Camargo MS de, Bozza NG, Pereira HS, Silva VM, Silva MA (2020) a) Increase in silicate fertilization improves the biomass of drought-tolerant contrasting cultivars without prejudicial effects in nutrient uptake in sugarcane. J Soil Sci Plant Nutr. https://doi.org/10.1007/s42729-020-00300-3

  20. Berthelsen S, Noble A, Kingston G, Hurney A, Rudd A, Garside A (2003) Improving yield and CCS in sugarcane through the application of silicon based amendments. Sugar Research and Development Corporation, CSIRO Land and Water. Available in https://elibrary.sugarresearch.com.au/handle/11079/12957. Accessed 10 Jan 2019

  21. Camargo MS, Korndörfer GH, Pereira HS (2007) Solubility of silicon in soils: effect of lime and silicic acid applied. Bragantia 66:637–647. https://doi.org/10.1590/S0006-87052007000400014

    Article  CAS  Google Scholar 

  22. Hallmark CT, Wilding LP, Smeck NE (1982) Silicon. In: Page AL, Miller RH, Keeney DR (eds) Methods of soil analysis. Part 2. Chemical and microbiological properties. American Society of Agronomy-Soil Science Society of America, Madison, pp 263–273

    Google Scholar 

  23. Jones JH, Handreck KA (1967) Silica in soils, plants, and animals. Adv Agron 19:107–149. https://doi.org/10.1016/S0065-2113(08)60734-8

    Article  CAS  Google Scholar 

  24. Lindsay WL (1979) Chemical equilibrium in soil. Wiley, New York

    Google Scholar 

  25. Somner M, Kaczorek D, Kuzyakov Y, Breuer J (2006) Silicon pools and fluxes in soils and landscapes—a review. J Plant Nutr Soil Sci 169:310–329. https://doi.org/10.1002/jpln.200521981

    Article  CAS  Google Scholar 

  26. Friesen DK, Sanz JI, Correa FJ, Winslow MD, Okada K, Datnoff LE, Snyder GH (1994) Silicon deficiency of upland rice on highly weathered Savanna soils in Colombia, I: Evidence of a major yield constraint. Proc Conf Intern Arroz. V. Reunião Nacional Pesquisa de Arroz. Embrapa, Goiânia

  27. Miles N, Manson AD, Rhodes R, Antwerpen R, Weigel A (2014) Extractable silicon in soils of the South African Sugar Industry and relationship with crop uptake. Comm Soil Sci Plant Anal 45:2949–2958. https://doi.org/10.1080/00103624.2014.956881

    Article  CAS  Google Scholar 

  28. Beckwith RS, Reeve R (1963) Studies on soluble silica in soils. 1-The sorption of silicon acid by soils and minerals. Australian J Soil Res 1:157–168

    Article  CAS  Google Scholar 

  29. Fox RL, Silva JA, Younge OR, Plucknett DL, Sherman GD (1967) Soil and plant silicon and silicate response by sugar cane. Soil Sci Soc Am Proc 31:775–779

    Article  CAS  Google Scholar 

  30. Fox RL, Silva JA, Plucknett DL, Teranishi DY (1969) Soluble and total silicon in sugarcane. Plant Soil 30:81–92. https://doi.org/10.1007/BF01885263

    Article  CAS  Google Scholar 

  31. Crusciol CAC, Arruda DP, Fernandes AM, Antonangelo JA, Alleoni JRF, Fernandes DM, McCray JM (2018) Evaluation of soil extractants for silicon availability for sugarcane. J Plant Nutr 41:2241–2255. https://doi.org/10.1080/01904167.2018.1500590

    Article  CAS  Google Scholar 

  32. van Raij B, Camargo OA (1973) Soluble silica in soils. Bragantia 32:223–231. https://doi.org/10.1590/S0006-8705197300010001

    Article  Google Scholar 

  33. Melo VF, Ribeiro AN, Maschio PA, Corrêa GF, Lima VC (2004) Mineralogy and forms of K and Mg in different weight and size classes of sand fraction of Triângulo Mineiro soils, Minas Gerais State, Brazil. Rev Bras Ci Solo 28:219–231. https://doi.org/10.1590/S0100-06832004000200001

    Article  CAS  Google Scholar 

  34. Camargo MS, Korndörfer GH, Wyler P (2014) Silicate fertilization of sugarcane cultivated in tropical soils. Field Crops Res 167:64–75. https://doi.org/10.1016/j.fcr.2014.07.009

    Article  Google Scholar 

  35. Camargo MS, Rocha G, Korndörfer GH (2013) Silicate fertilization of tropical soils: silicon availability and recovery index of sugarcane. R Bras Ci Solo 37:602–612. https://doi.org/10.1590/S0100-06832013000500016

    Article  Google Scholar 

  36. Camargo MS, Korndörfer GH, Foltran DE, Henrique CM, Rossetto R (2010) Silicon uptake, yield and Diatraea saccharalis incidence in sugarcane cultivars. Bragantia 69:937–944. https://doi.org/10.1590/S0006-87052010000400020

    Article  Google Scholar 

  37. Ayres AS (1966) Calcium silicate slag as a growth stimulant for sugarcane on low-silicon soils. Soil Sci 101:216–227

    Article  CAS  Google Scholar 

  38. Ross L, Nababsing P, Cheong WY (1974) Residual effect of calcium silicate applied to sugarcane soils. Proc Int Congress Soc Sugarcane Technol 15:539–542

    Google Scholar 

  39. Anderson DL, Jones DB, Snyder GH (1987) Response of a rice-sugarcane rotation to calcium silicate slag on Everglades Histosols. Agron J 79:531–535. https://doi.org/10.2134/agronj1987.00021962007900030026x

    Article  Google Scholar 

  40. Anderson DL, Snyder GH, Martin FG (1991) Multi-year response of sugarcane to calcium silicate slag on Everglades histosols. Agron J 83:870–874. https://doi.org/10.2134/agronj1991.00021962008300050019x

    Article  CAS  Google Scholar 

  41. Elawad SH, Street JJ, Gascho GJ (1982) Response of sugarcane to silicate source and rate. II. Leaf freckling and nutrient content. Agron J 74:484–487. https://doi.org/10.2134/agronj1982.00021962007400030020x

    Article  Google Scholar 

  42. Gascho GJ, Andreis HJ (1974) Sugar cane response to calcium silicate slag applied to organic and sand soils. Proc Congress Soc Sugarcane Technol 15:543–551

    Google Scholar 

  43. McCray JM, Rice RW, Baucum LE (2011) Calcium silicon recommendations for sugarcane on Florida organic soils. Available at https://edis.ifas.ufl.edu/sc092. Accessed 8 Jan 2020

  44. McCray JM, Shangning J (2012) Calibration of sugarcane response to calcium silicate on Florida Histosols. J Plant Nutr 35:1192–1209. https://doi.org/10.1080/01904167.2012.676131

    Article  CAS  Google Scholar 

  45. McCray JM, Shangning J (2018) Sugarcane yield response to calcium silicate on Florida mineral soils. J Plant Nutr 41:19:2413–2424. https://doi.org/10.1080/01904167.2018.1510520

    Article  CAS  Google Scholar 

  46. Clements HF, Putman EW,Wilson JR (1967) Eliminating soil toxicities with calcium metasilicate. Hawaiian Sugarcane Technol Annual Rep, pp 43–44

  47. Cheong BT (1982) Some significant functions of silicon to higher plants. J Plant Nutr 5:1345–1353

    Article  Google Scholar 

  48. Gurgel MNA (1979) Efeitos do silicato de cálcio e sua interação com o fósforo no estado nutricional, produtividade e qualidade tecnológica da cana-de-açúcar. M.S. Thesis. Escola Superior de Agricultura Luiz de Queiroz, University of São Paulo, 62p

  49. Moberly PK, Meyer JH (1975) The amelioration of acid soils in the South Africa Sugar Industry. Fert Soc S Afr J 2:57–66

    Google Scholar 

  50. Korndörfer GH, Benedini M, Paula FB, Chagas RCS (2000) Cimento como fonte de silício em cana-de-açúcar. Stab 19:30–33

    Google Scholar 

  51. Korndörfer GH, Pereira HS, Camargo MS (2002) Papel do silício na produção de cana-de-açúcar. Stab 21:6–9

    Google Scholar 

  52. Raid RN, Anderson DL, Ulloa MF (1992) Influence of cultivar and amendment of soil with calcium silicate slag on foliar disease development and yield of sugarcane. Crop Prot 11:84–88. https://doi.org/10.1016/0261-2194(92)90085-J

    Article  CAS  Google Scholar 

  53. Xu G, Zhan X, Chunhua L, Bao S, Liu X, Chu T (2001) Assessing methods of available silicon in calcareous soils. Commun Soil Sci Plant Anal 32(6):787–801. https://doi.org/10.1081/CSS-100103909

    Article  CAS  Google Scholar 

  54. Pereira HS, Korndörfer GH, Vidal AA, Camargo MS (2004) Silicon sources for rice crop. Sci Agric 61:522–528. https://doi.org/10.1590/S0103-90162004000500010

    Article  Google Scholar 

  55. Hagihara HH, Bosshart RP (1985) Revised calcium silicate recommendation for plant ratoon crops. Proc 43rd Annual Conf Hawaiian Sugar Technol, pp 40–43

  56. Du Preez P (1970) The effect of silica on cane growth. South African Sugar Technol Assoc Proc 44:183–188

    CAS  Google Scholar 

  57. Casagrande JC, Zambello E, Orlando Filho J (1981) Aplicação de silício em cana-de-açúcar no estado de São Paulo. Brasil Açucareiro 98:54–60

    Google Scholar 

  58. Keeping MG, Meyer JH, Sewpersad C (2013) Soil silicon amendments increase resistance of sugarcane to stalk borer Eldana saccharina Walker (Lepidoptera: Pyralidae) under field conditions. Plant Soil 363:297–318

    Article  CAS  Google Scholar 

  59. Keeping MG, Miles N, Sewpersad C (2014) Silicon reduces impact of plant nitrogen in promoting stalk borer (Eldana saccharina) but not sugarcane thrips (Fulmekiola serrata) infestations in sugarcane. Front Plant Sci. https://doi.org/10.3389/fpls.2014.00289

    Article  PubMed Central  PubMed  Google Scholar 

  60. Keeping MG, Miles N, Rutherford RS (2017) Liming an acid soil treated with diverse silicon sources: effects on silicon uptake by sugarcane (Saccharum spp. hybrids). J Plant Nutr 40:1417–1436. https://doi.org/10.1080/01904167.2016.1267751

    Article  CAS  Google Scholar 

  61. Karamugine A, Meyer JH, Haynes RJ, Naidoo G, Keeping MG (2006) An assessment of soil extraction methods for predicting the silicon requirements for sugarcane. Proc South Afr Sugar Technol Assoc 80:287–290

    Google Scholar 

  62. Anderson DL, Bowen JE (1992) Sugarcane nutrition. Associação Brasileira de Potassa e do Fósforo (Potafós), Piracicaba

    Google Scholar 

  63. Korndörfer GH, Snyder GH, Ulloa M, Powell G, Datnoff LE (2001) Calibration of soil and plant silicon analysis for rice production. J Plant Nutr 24:1071–1084. https://doi.org/10.1081/PLN-100103804

    Article  Google Scholar 

  64. Korndörfer GH, Coelho NM, Snyder GH, Mizutani CT (1999) An evaluation of soil extractants for silicon availability in upland rice. R Bras Ci Solo 23:101–106. https://doi.org/10.1590/S0100-06831999000100013

    Article  Google Scholar 

  65. de Camargo MS, Bezerra BKL, Vitti AC, Silva MA, Oliveira AL (2017) Silicon fertilization reduces the deleterious effects of water deficit in sugarcane. J Soil Sci Plant Nutr 17:99–111. https://doi.org/10.4067/S0718-95162017005000008

    Article  Google Scholar 

  66. de Camargo MS, Bezerra BKL, Holanda LA, Oliveira AL, Vitti AC, Silva MA (2019) Silicon fertilization improves physiological responses in sugarcane cultivars grown under water deficit. J Soil Sci Plant Nutr 19:81–91. https://doi.org/10.1007/s42729-019-0012-1

    Article  CAS  Google Scholar 

  67. Keeping MG, Meyer JH (2006) Silicon-mediated resistance of sugarcane to Eldana saccharina Walker (Lepidoptera: Pyralidae): effects of silicon source and cultivar. J Appl Entomol 130:410–420. https://doi.org/10.1111/j.1439-0418.2006.01081.x

    Article  CAS  Google Scholar 

  68. Sousa RTX, Korndörfer GH, Wangen DRB (2010) Recovery of silicon from metallurgy slag by sugarcane cultivars. Bragantia 69:669–676. https://doi.org/10.1590/S0006-87052010000300019

    Article  Google Scholar 

  69. Borges BMMN, Almeida TBF, Prado RM (2016) Response of sugarcane ratoon to nitrogen without and with the application of silicon. J Plant Nutr 39:793–803. https://doi.org/10.1080/01904167.2015.1109101

    Article  CAS  Google Scholar 

  70. Crusciol AC, Rossato OB, Foltran R, Martello JM, Nascimento CAC (2017) Soil fertility, sugarcane yield affected by limestone, silicate, and gypsum application. Commun Soil Sci Plan Anal 48:2314–2323. https://doi.org/10.1080/00103624.2017.1411507

    Article  CAS  Google Scholar 

  71. Korndörfer GH, Pereira HS, Camargo MS (2003) Silicatos de cálcio e magnésio. Uberlândia, MG, Universidade Federal de Uberlândia, 23p. (Boletim Técnico, 1)

  72. Yoshida S, Onishi A, Kitagishi K (1962) Histochemistry of silicon in rice plant: III. The presence of cuticle-silica double layer in the epidermal tissue. Soil Sci Plant Nutr 8:1–5. https://doi.org/10.1080/00380768.1962.10430982

    Article  Google Scholar 

  73. Ma JF, Yamaji N (2006) Silicon uptake and accumulation in higher plants. Trends Plant Sci 11:392–397. https://doi.org/10.1016/j.tplants.2006.06.007

    Article  CAS  PubMed  Google Scholar 

  74. Thangavelus S, Rao KC (2002) Uptake of silicon in sugarcane genetic stocks and its association with the uptake of other nutrients and cane and sugar yield. Indian Sugar 51:859–864

    Google Scholar 

  75. Samuels G (1969) Silicon and sugar. Sugar y Azucar 66:25–29

    Google Scholar 

  76. Khalid RA, Silva JA, Fox RL (1978) Residual effects of calcium silicate in tropical soils: I. Fate of applied silicon during five years cropping. Soil Sci Soc Am J 42:89–97. https://doi.org/10.2136/sssaj1978.03615995004200010020x

    Article  CAS  Google Scholar 

  77. Camargo MS, Korndörfer GH, Foltran DE (2014) Silicon absorption and stalk borer incidence by sugarcane varieties in two ratoons. Biosci J 30:1304–1313. http://www.seer.ufu.br/index.php/biosciencejournal/article/view/22106

  78. Van Dillewijn C (1952) Botany of Sugarcane. The Chronica Botanica Co. Book Department, Waltham, Mass.

    Google Scholar 

  79. Frew A, Allsopp PG, Gherlenda AN, Johnson SN (2016) Increased root herbivory under elevated atmospheric carbon dioxide concentrations is reversed by silicon-based plant defences. J Appl Ecol 54:1310–1319. https://doi.org/10.1111/1365-2664.12822

    Article  CAS  Google Scholar 

  80. Frew A, Powell JR, Allsopp PG, Sallam N, Johnson SN (2017) Arbuscular mycorrhizal fungi promote silicon accumulation in plant roots, reducing the impacts of root herbivory. Plant Soil 419:423–433. https://doi.org/10.1007/s11104-017-3357-z

    Article  CAS  Google Scholar 

  81. Frew A, Powell JR, Hiltpold I, Allsopp PG, Sallam N, Johnson SN (2017) Host plant colonisation by arbuscular mycorrhizal fungi stimulates immune function whereas high root silicon concentrations diminish growth in a soil-dwelling herbivore. Soil Biol Biochem 112:117–126. https://doi.org/10.1016/j.soilbio.2017.05.008

    Article  CAS  Google Scholar 

  82. Gallo JP, Furlani PR, Bataglia OC, Hiroce R (1974) Silicon concentrations in cultivated gramineous plants and forages. Ci Cult 26:286–292

    CAS  Google Scholar 

  83. Deren CW, Glaz B, Snyder GH (1993) leaf–tissue silicon content of sugarcane genotypes grown on Everglades histossols. J Plant Nutr 16:2273–2280. https://doi.org/10.1080/01904169309364685

    Article  CAS  Google Scholar 

  84. Berthelsen S, Hurney A, Kingston G, Rudd A, Garside AL, Noble A (2001) Plant Cane responses to silicate products in the Mossman, Innisfail and Bundaberg districts. Proc Aust Sugar Cane Technol 23:297–303

    Google Scholar 

  85. Camargo MS, Amorim L, Gomes Júnior AR (2013) Silicon fertilisation decreases brown rust incidence in sugarcane. Crop Prot 53:72–79. https://doi.org/10.1016/j.cropro.2013.06.006

    Article  CAS  Google Scholar 

  86. Bezerra BKL, Lima GPP, Reis AR, Silva MA, Camargo MS (2019) Physiological and biochemical impacts of silicon against water deficit in sugarcane. Acta Physiol Plant 41:189. https://doi.org/10.1007/s11738-019-2980-0

    Article  CAS  Google Scholar 

  87. Elliott CL, Snyder GH (1991) Autoclave-induced digestion for the colometric determination of silicon in rice straw. J Agric Food Chem 39:1118–1119. https://doi.org/10.1021/jf00006a024

    Article  CAS  Google Scholar 

  88. Halais P (1969) Silicon, calcium and manganese contents of cane leaf sheaths collected on the great soil groups in Mauritius. https://www.semanticscholar.org. Accessed 10 Jan 2018

  89. Fox RL, Silva JA (1978) Symptoms of plant malnutrition: silicon, an agronomically essential nutrient for sugarcane. Illust Conc Trop Agric, 8, Dept Agron Soil Sci, College of Trop. Agric. Human Res, Univ. of Hawaii, Honolulu

    Google Scholar 

  90. Miles N, Rhodes R (2013) Guidelines for the interpretation of leaf analyses for sugarcane. Information Sheet 7.17, African Sugarcane Research Institute, Mount Edgecombe, KwaZulu-Natal

Download references

Acknowledgements

The first author would like to thank the São Paulo State Research Foundation (FAPESP) for financial support of research projects (06/06288-2; 08/10795-2; 13/04144-7; 18/05843-0), which provided several results for this review.

Funding

The authors have no relevant financial or non-financial interests to disclose.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception of this article. Mônica Sartori Camargo performed the literature search and data analysis, and wrote the first draft. All authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Mônica Sartori Camargo.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Research Involving Human Participants and or Animals

The authors declare this study does not contain studies with human participants or animals.

Consent to Participate

All authors give their consent for participate of this paper.

Consent for Publication

All authors give their consent for submission and publishing the this paper. Code availability: Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camargo, M.S., Keeping, M.G. Silicon in Sugarcane: Availability in Soil, Fertilization, and Uptake. Silicon 13, 3691–3701 (2021). https://doi.org/10.1007/s12633-020-00935-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00935-y

Keywords

Navigation