Skip to main content
Log in

Investigating the Effect of Silicon on the Morpho-Physiological and Molecular Structures of Wheat (Triticum aestivum L. cv. Yannong 19) Under Cadmium Stress

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

There is a rapid increase in the contamination of agricultural soils with cadmium worldwide, especially in China, so it is necessary to find solutions to reduce the toxicity of it. To investigate the effect of silicon on cadmium toxicity in Triticum aestivum L. cv. Yannong 19, an experiment was conducted with four treatments (control, silicon, cadmium, silicon × cadmium). This experiment examined the following factors in wheat: root-and-shoot cadmium concentration, TF, root-and-shoot Silicon concentration, SOD, POD, CAT, APX, GSH, AsA, MDA, total protein content, total soluble sugars, root-and-shoot dry weight, Total chlorophyll, chlorophyll a and b, the content of N, P, and K. The present study showed that cadmium treatment severely affected wheat seedling morphological and physiological factors, but silicon treatment greatly reduced these adverse effects. Furthermore, silicon alone had significant positive effects on wheat's biochemical and morphological structures. The results of this study also revealed that silicon treatment increased TaPIP1 and TaLsi1 gene expression (involved in the absorption and transport of Si), whilst cadmium treatment caused the upregulation of TaNramp5, TaLCT1, TaTM20, TaHMA2, and TaHMA3 genes (involved in the absorption and transport of Cd). In conclusion, the present study found that, although cadmium negatively affects the various structures of Yannong 19, nevertheless, Sodium Metasilicate Nonahydrate (a source of silicon) can be a viable method of reducing cadmium absorption, transfer, and toxicity in this wheat variety.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

References

  1. Sarwar N et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  ADS  MathSciNet  CAS  PubMed  Google Scholar 

  2. Zhou F et al (2019) Toxicity assessment due to prenatal and lactational exposure to lead, cadmium and mercury mixtures. Environ Int 133:105192

    Article  CAS  PubMed  Google Scholar 

  3. Riaz M et al (2021) Arbuscular mycorrhizal fungi-induced mitigation of heavy metal phytotoxicity in metal contaminated soils: a critical review. J Hazard Mater 402:123919

    Article  CAS  PubMed  Google Scholar 

  4. Adhikari S et al (2018) Sulfate improves cadmium tolerance by limiting cadmium accumulation, modulation of sulfur metabolism and antioxidant defense system in maize. Environ Exp Bot 153:143–162

    Article  CAS  Google Scholar 

  5. Hussain S, Khaliq A, Noor MA, Tanveer M, Hussain HA, Hussain S, Shah T, Mehmood T (2020) Metal toxicity and nitrogen metabolism in plants: an overview. In: Carbon and nitrogen cycling in soil. Springer, Singapore, pp 221–248

  6. Boorboori MR, Zhang H-Y (2022) Arbuscular mycorrhizal fungi are an influential factor in improving the phytoremediation of arsenic, cadmium, lead, and chromium. J Fungi 8(2):176

    Article  CAS  Google Scholar 

  7. Zhou J et al (2021) Soil and foliar applications of silicon and selenium effects on cadmium accumulation and plant growth by modulation of antioxidant system and Cd translocation: comparison of soft vs. durum wheat varieties. J Hazard Mater 402:123546

    Article  CAS  PubMed  Google Scholar 

  8. Anjum SA et al (2016) Morpho-physiological growth and yield responses of two contrasting maize cultivars to cadmium exposure. Clean Soil Air Water 44(1):29–36

    Article  MathSciNet  CAS  Google Scholar 

  9. Wan Y et al (2016) Cadmium uptake dynamics and translocation in rice seedling: influence of different forms of selenium. Ecotoxicol Environ Saf 133:127–134

    Article  CAS  PubMed  Google Scholar 

  10. Wang P et al (2019) Cadmium contamination in agricultural soils of China and the impact on food safety. Environ Pollut 249:1038–1048

    Article  CAS  PubMed  Google Scholar 

  11. Ismael MA et al (2019) Cadmium in plants: uptake, toxicity, and its interactions with selenium fertilizers. Metallomics 11(2):255–277

    Article  CAS  PubMed  Google Scholar 

  12. Xuebin Q et al (2020) Silicon and its application methods improve physiological traits and antioxidants in Triticum aestivum (L.) under cadmium stress. J Soil Sci Plant Nutr 20:1110–1121

    Article  Google Scholar 

  13. Liu H-L et al (2019) Study of the bioavailability of heavy metals from atmospheric deposition on the soil-pakchoi (Brassica chinensis L.) system. J Hazard Mater 362:9–16

    Article  CAS  PubMed  Google Scholar 

  14. Chen D et al (2019) Effects of boron, silicon and their interactions on cadmium accumulation and toxicity in rice plants. J Hazard Mater 367:447–455

    Article  CAS  PubMed  Google Scholar 

  15. Thind S et al (2021) Silicon application modulates growth, physio-chemicals, and antioxidants in wheat (Triticum aestivum L.) exposed to different cadmium regimes. Dose-Response 19(2):15593258211014646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Singh S et al (2022) Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. Physiol Plant 174(5):e13065

    Article  MathSciNet  CAS  PubMed  Google Scholar 

  17. Paunov M et al (2018) Effects of different metals on photosynthesis: cadmium and zinc affect chlorophyll fluorescence in durum wheat. Int J Mol Sci 19(3):787

    Article  PubMed  PubMed Central  Google Scholar 

  18. Vitória AP, Lea PJ, Azevedo RA (2001) Antioxidant enzymes responses to cadmium in radish tissues. Phytochemistry 57(5):701–710

    Article  PubMed  Google Scholar 

  19. Farooq MA et al (2013) Alleviation of cadmium toxicity by silicon is related to elevated photosynthesis, antioxidant enzymes; suppressed cadmium uptake and oxidative stress in cotton. Ecotoxicol Environ Saf 96:242–249

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Barceló J, Poschenrieder C (1990) Plant water relations as affected by heavy metal stress: a review. J Plant Nutr 13(1):1–37

    Article  Google Scholar 

  21. Thind S et al (2021) Alleviation of cadmium stress by silicon nanoparticles during different phenological stages of Ujala wheat variety. Arab J Geosci 14(11):1028

    Article  CAS  Google Scholar 

  22. Li S et al (2015) Plant growth, development and change in GSH level in safflower (Carthamus tinctorius L.) exposed to copper and lead. Arch Biol Sci 67(2):385–396

    Article  Google Scholar 

  23. Thind S et al (2020) Physiological and biochemical bases of foliar silicon-induced alleviation of cadmium toxicity in wheat. J Soil Sci Plant Nutr 20:2714–2730

    Article  CAS  Google Scholar 

  24. Qu D et al (2018) Regulation of chitosan on the ascorbate-glutathione cycle in Zea mays seedling leaves under cadmium stress. Plant Sci J 36(2):291–299

    Google Scholar 

  25. Rizwan M et al (2016) Cadmium minimization in wheat: a critical review. Ecotoxicol Environ Saf 130:43–53

    Article  CAS  PubMed  Google Scholar 

  26. Ma JF, Takahashi E (2002) Soil, fertilizer, and plant silicon research in Japan. Elsevier Science, Amsterdam

  27. Long M et al (2018) Effects of water and exogenous Si on element concentrations and ecological stoichiometry of plantain (Plantago lanceolata L.). J Plant Nutr 41(10):1263–1275

    Article  CAS  Google Scholar 

  28. Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17

    Article  CAS  Google Scholar 

  29. Naeem A et al (2015) Suppression of cadmium concentration in wheat grains by silicon is related to its application rate and cadmium accumulating abilities of cultivars. J Sci Food Agric 95(12):2467–2472

    Article  CAS  PubMed  Google Scholar 

  30. Shi X et al (2005) Effect of Si on the distribution of Cd in rice seedlings. Plant Soil 272:53–60

    Article  CAS  Google Scholar 

  31. Lukačová Z et al (2013) Silicon mitigates the Cd toxicity in maize in relation to cadmium translocation, cell distribution, antioxidant enzymes stimulation and enhanced endodermal apoplasmic barrier development. Plant Growth Regul 70:89–103

    Article  Google Scholar 

  32. Younis AA, Khattab H, Emam MM (2020) Impacts of silicon and silicon nanoparticles on leaf ultrastructure and TaPIP1 and TaNIP2 gene expressions in heat stressed wheat seedlings. Biol Plant 64(1):343–352

  33. Montpetit J et al (2012) Cloning, functional characterization and heterologous expression of TaLsi1, a wheat silicon transporter gene. Plant Mol Biol 79:35–46

    Article  CAS  PubMed  Google Scholar 

  34. Yang H et al (2021) Interactive effects of lanthanum and calcium on cadmium accumulation in wheat with special reference to TaNramp5 expression regulated by calmodulin. J Agric Food Chem 69(24):6870–6878

    Article  CAS  PubMed  Google Scholar 

  35. Uraguchi S et al (2011) Low-affinity cation transporter (OsLCT1) regulates cadmium transport into rice grains. Proc Natl Acad Sci 108(52):20959–20964

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ghassemi HR, Mostajeran A (2018) TaSOS1 and TaTM20 genes expression and nutrient uptake in wheat seedlings may be altered via excess cadmium exposure and inoculation with Azospirillum brasilense Sp7 under saline condition. Appl Ecol Environ Res 16(2):1797–1817

  37. Qiao K et al (2018) The metal-binding domain of wheat heavy metal ATPase 2 (TaHMA2) is involved in zinc/cadmium tolerance and translocation in Arabidopsis. Plant Cell Rep 37:1343–1352

    Article  CAS  PubMed  Google Scholar 

  38. Qiao L et al (2021) Novel quantitative trait loci for grain cadmium content identified in hard white spring wheat. Front Plant Sci 12:756741

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boorboori MR et al (2021) Comparison of silicon-evoked responses on arsenic stress between different dular rice genotypes. Plants 10(10):2210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Boorboori MR et al (2020) The role of silicon to increase arsenic tolerance in rice (Oryza sativa L.) seedlings by reinforcing anti-oxidative defense. Bioagro 32(3):159–168

    Google Scholar 

  41. Mukherjee S, Choudhuri M (1983) Implications of water stress-induced changes in the levels of endogenous ascorbic acid and hydrogen peroxide in Vigna seedlings. Physiol Plant 58(2):166–170

    Article  CAS  Google Scholar 

  42. Irigoyen J, Einerich D, Sánchez-Díaz M (1992) Water stress induced changes in concentrations of proline and total soluble sugars in nodulated alfalfa (Medicago sativa) plants. Physiol Plant 84(1):55–60

    Article  CAS  Google Scholar 

  43. Fırat M et al (2017) Determination of trace amount of cadmium using dispersive liquid-liquid microextraction-slotted quartz tube-flame atomic absorption spectrometry. Spectrochim Acta Part B 129:37–41

    Article  ADS  Google Scholar 

  44. Hartmut K, Alan RW (1983) Determinations of total carotenoids and chlorophylls b of leaf extracts in different solvents. Analysis 4:142–196

    Google Scholar 

  45. Cock J, Yoshida S, Forno DA (1976) Laboratory manual for physiological studies of rice. Int. Rice Res. Inst.

    Google Scholar 

  46. Boorboori MR et al (2021) Silicon modulates molecular and physiological activities in Lsi1 transgenic and wild Lemont Rice seedlings under arsenic stress. Agronomy 11(8):1532

    Article  CAS  Google Scholar 

  47. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  48. Rahman SU et al (2021) Silicon elevated cadmium tolerance in wheat (Triticum aestivum L.) by endorsing nutrients uptake and antioxidative defense mechanisms in the leaves. Plant Physiol Biochem 166:148–159

    Article  Google Scholar 

  49. Wu J et al (2019) Silicon decreases cadmium concentrations by modulating root endodermal suberin development in wheat plants. J Hazard Mater 364:581–590

    Article  CAS  PubMed  Google Scholar 

  50. Nwugo CC, Huerta AJ (2008) Effects of silicon nutrition on cadmium uptake, growth and photosynthesis of rice plants exposed to low-level cadmium. Plant Soil 311:73–86

    Article  CAS  Google Scholar 

  51. Merwad A-RM, Desoky E-SM, Rady MM (2018) Response of water deficit-stressed Vigna unguiculata performances to silicon, proline or methionine foliar application. Sci Hortic 228:132–144

    Article  CAS  Google Scholar 

  52. Ali S et al (2019) Silicon nanoparticles enhanced the growth and reduced the cadmium accumulation in grains of wheat (Triticum aestivum L.). Plant Physiol Biochem 140:1–8

    Article  CAS  PubMed  Google Scholar 

  53. Feng Shao J, Che J, Yamaji N, Fang Shen R, Feng Ma J (2017) Silicon reduces cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in rice. J Exp Bot 68(20):5641–5651

    Article  PubMed  PubMed Central  Google Scholar 

  54. Boorboori MR (2023) Investigating the role of silicon in reducing the risk of arsenic, cadmium, drought and salinity stresses in wheat (Triticum aestivum L.). J Crop Sci Biotechnol 1–18

  55. Foyer CH, Noctor G (2011) Ascorbate and glutathione: the heart of the redox hub. Plant Physiol 155(1):2–18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ashfaque F et al (2017) Response of silicon on metal accumulation, photosynthetic inhibition and oxidative stress in chromium-induced mustard (Brassica juncea L.). S Afr J Bot 111:153–160

    Article  CAS  Google Scholar 

  57. urRahman S et al (2021) Alleviatory effects of silicon on the morphology, physiology, and antioxidative mechanisms of wheat (Triticum aestivum L.) roots under cadmium stress in acidic nutrient solutions. Sci Rep 11(1):1958

    Article  ADS  CAS  Google Scholar 

  58. Huang H et al (2019) 1-methylcyclopropene (1-MCP) slows ripening of kiwifruit and affects energy status, membrane fatty acid contents and cell membrane integrity. Postharvest Biol Technol 156:110941

    Article  CAS  Google Scholar 

  59. Liu L et al (2014) Effects of cadmium (Cd) on seedling growth traits and photosynthesis parameters in cotton (Gossypium hirsutum L.). Plant Omics 7(4):284–290

    ADS  CAS  Google Scholar 

  60. Yang Y et al (2020) Response of photosynthesis to different concentrations of heavy metals in Davidia involucrata. PLoS ONE 15(3):e0228563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Song X et al (2019) Detection of cadmium risk to the photosynthetic performance of Hybrid Pennisetum. Front Plant Sci 10:798

    Article  PubMed  PubMed Central  Google Scholar 

  62. Alzahrani Y et al (2018) The defensive role of silicon in wheat against stress conditions induced by drought, salinity or cadmium. Ecotoxicol Environ Saf 154:187–196

    Article  CAS  PubMed  Google Scholar 

  63. Song A et al (2009) Silicon-enhanced resistance to cadmium toxicity in Brassica chinensis L. is attributed to Si-suppressed cadmium uptake and transport and Si-enhanced antioxidant defense capacity. J Hazard Mater 172(1):74–83

    Article  CAS  PubMed  Google Scholar 

  64. Sasaki A et al (2012) Nramp5 is a major transporter responsible for manganese and cadmium uptake in rice. Plant Cell 24(5):2155–2167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Boorboori MR et al (2023) Application of Silicon and Selenium in Rice for Reducing Cadmium Stress. Phyton 92(6)

  66. Yang H et al (2019) Lanthanum reduces the cadmium accumulation by suppressing expression of transporter genes involved in cadmium uptake and translocation in wheat. Plant Soil 441:235–252

    Article  CAS  Google Scholar 

  67. Kim Y-Y et al (2008) Expression of the novel wheat gene TM20 confers enhanced cadmium tolerance to bakers’ yeast. J Biol Chem 283(23):15893–15902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Greger M et al (2016) Silicate reduces cadmium uptake into cells of wheat. Environ Pollut 211:90–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The sincere gratitude goes out to our colleagues at the College of Environment and Surveying and Mapping Engineering, Suzhou University, Anhui, who supported us during this research.

Author information

Authors and Affiliations

Authors

Contributions

Mohammad Reza Boorboori and Haiyang Zhang wrote the main manuscript text and E.F. prepared Figs. 1, 2 and 3. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Mohammad Reza Boorboori or Haiyang Zhang.

Ethics declarations

Institutional Review Board

Not applicable.

Informed Consent

Not applicable.

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 15 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Boorboori, M.R., Zhang, H. Investigating the Effect of Silicon on the Morpho-Physiological and Molecular Structures of Wheat (Triticum aestivum L. cv. Yannong 19) Under Cadmium Stress. Silicon 16, 1033–1042 (2024). https://doi.org/10.1007/s12633-023-02704-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02704-z

Keywords

Navigation