Skip to main content
Log in

Silicon Application Methods Influence the Nutrient Uptake of Maize Plants in Tropical Soil

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

The benefits of applying silicon to plants under stressful conditions are recognized. However, few studies have shown the effect of supply and form of application of silicon on the nutrition of plants grown under ideal conditions. This study aimed to verify the effects of different methods of silicon application on the nutrient uptake of maize in two tropical soils.

Methods

Silicon was supplied in three application methods (in the planting furrow, in the total pot area, and spraying) at two rates (30 and 120 mg Si kg−1 in soil; 2.56 and 7.68 mg Si pot−1 in leaf spraying) in maize plants in two tropical soil types (loamy sand textured soil and sandy clay loam textured soil). Thirty days after emergence, the concentrations of macronutrients, micronutrients, and silicon were evaluated.

Results

In sandy soil, potassium silicate application contributed to an increase in N, P, K, Mg, Si, and Cu concentrations, whereas in clay soil, there was an increase in the plant concentrations of P, K, Ca, Mg, S, Cu, Si, and Mg.

Conclusion

It was concluded that silicon application contributed to greater nutrient uptake in maize plants. Our study suggests that silicon application could be an important tool for increasing mineral fertilization in tropical soil conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Are available.

References

  1. Maqbool MA, Issa AB, Khokhar ES (2021) Quality protein maize (QPM): Importance, genetics, timeline of different events, breeding strategies and varietal adoption. Plant Breed 140:375–399. https://doi.org/10.1111/pbr.12923

    Article  CAS  Google Scholar 

  2. Food and Agricultural Organization (FAO) of the United Nations (2019) “FAOSTAT Data.” Home.  http://www.fao.org/faostat/en/#data. Accessed 6 Oct 2022

  3. Shah TR, Prasad K, Kumar P (2016) Maize-A potential source of human nutrition and health: A review. Cogent Food Agri 2:1166995. https://doi.org/10.1080/23311932.2016.1166995

    Article  CAS  Google Scholar 

  4. Santpoort R (2020) The drivers of maize area expansion in Sub-Saharan Africa. How policies to boost maize production overlook the interests of smallholder farmers. Land 9:68. https://doi.org/10.3390/land9030068

    Article  Google Scholar 

  5. Etesami H, Adl SM (2020) Can interaction between silicon and non–rhizobial bacteria help in improving nodulation and nitrogen fixation in salinity–stressed legumes? A review. Rhizosphere 15:100229. https://doi.org/10.1016/j.rhisph.2020.100229

    Article  Google Scholar 

  6. Liu B, Soundararajan P, Manivannan A (2019) Mechanisms of silicon-mediated amelioration of salt stress in plants. Plants 8:307. https://doi.org/10.3390/plants8090307

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Ranjan A, Sinha R, Bala M, Pareek A, Singla-Pareek SL, Singh AK (2021) Silicon-mediated abiotic and biotic stress mitigation in plants: Underlying mechanisms and potential for stress resilient agriculture. Plant Physiol Biochem 163:15–25. https://doi.org/10.1016/j.plaphy.2021.03.044

    Article  PubMed  CAS  Google Scholar 

  8. Seal P, Das P, Biswas AK (2018) Versatile potentiality of silicon in mitigation of biotic and abiotic stresses in plants: a review. Am J Plant Sci 9:1433. https://doi.org/10.4236/ajps.2018.97105

    Article  CAS  Google Scholar 

  9. Song XP, Verma KK, Tian DD, Zhang XQ, Liang YJ, Huang X, Li YR (2021) Exploration of silicon functions to integrate with biotic stress tolerance and crop improvement. Biol Res 54:19. https://doi.org/10.1186/s40659-021-00344-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Thakral V, Bhat JA, Kumar N, Myaka B, Sudhakaran S, Patil G, Sonah H, Shivaraj MS, Deshmukh R (2021) Role of silicon under contrasting biotic and abiotic stress conditions provides benefits for climate smart cropping. Environ Exp Bot 189:104545. https://doi.org/10.1016/j.envexpbot.2021.104545

    Article  CAS  Google Scholar 

  11. Nascimento CWA, Nunes GHS, Preston HAF, da Silva FBV, Preston W, Loureiro FLC (2020) Influence of silicon fertilization on nutrient accumulation, yield and fruit quality of melon grown in northeastern Brazil. Silicon 12:937–943. https://doi.org/10.1007/s12633-019-00187-5

    Article  CAS  Google Scholar 

  12. Garcia Neto J, Prado RM, de Souza Júnior JP, Silva SLO, Farias TP, de Souza JS (2022) Silicon leaf spraying increases biofortification production, ascorbate concentration and decreases water loss post-harvest from land cress and chicory leaves. J Plant Nutr 45(8):1283–1290. https://doi.org/10.1080/01904167.2021.2003390

    Article  CAS  Google Scholar 

  13. Xu X, Zou G, Li Y, Sun Y, Liu F (2023) Silicon application improves strawberry plant antioxidation ability and fruit nutrition under both full and deficit irrigation. Sci Hortic 309:111684. https://doi.org/10.1016/j.scienta.2022.111684

    Article  CAS  Google Scholar 

  14. Ibrahim MA, Merwad AM, Elnaka EA, Burras CL, Follett L (2016) Application of silicon ameliorated salinity stress and improved wheat yield. J Soil Sci Environ Manage 7:81–91. https://doi.org/10.5897/JSSEM2016.0571

    Article  CAS  Google Scholar 

  15. Elrys A, Merwad AR (2017) Effect of alternative spraying with silicate and licorice root extract on yield and nutrients uptake by pea plants. Egypt J Agron 39:279–292. https://doi.org/10.21608/agro.2017.1429.1071

    Article  Google Scholar 

  16. Merwad ARM (2018) Response of yield and nutrients uptake of pea plants to silicate under sandy soil conditions. Commun Soil Sci Plant Anal 49:1553–1562. https://doi.org/10.1080/00103624.2018.1474895

    Article  CAS  Google Scholar 

  17. Pati S, Pal B, Badole S, Hazra GC, Mandal B (2016) Effect of silicon fertilization on growth, yield, and nutrient uptake of rice. Commun Soil Sci Plant Anal 47:284–290. https://doi.org/10.1080/00103624.2015.1122797

    Article  CAS  Google Scholar 

  18. Jang SW, Kim Y, Khan AL, Na CI, Lee IJ (2018) Exogenous short-term silicon application regulates macro-nutrients, endogenous phytohormones, and protein expression in Oryza sativa L. BMC Plant Biol 18:4. https://doi.org/10.1186/s12870-017-1216-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. Hu AY, Che J, Shao JF, Yokosho K, Zhao XQ, Shen RF, Ma JF (2018) Silicon accumulated in the shoots results in down-regulation of phosphorus transporter gene expression and decrease of phosphorus uptake in rice. Plant Soil 423:317–325. https://doi.org/10.1007/s11104-017-3512-6

    Article  CAS  Google Scholar 

  20. Guével MH, Menzies J, Bélanger RR (2007) Effect of root and foliar applications of soluble silicon on powdery mildew control and growth of wheat plants. Eur J Plant Pathol 119:429–436. https://doi.org/10.1007/s10658-007-9181-1

    Article  CAS  Google Scholar 

  21. Teixeira GCM, Prado RM, Rocha AMS, Piccolo MC (2020) Root- and foliar-applied silicon modifies C: N: P ratio and increases the nutritional efficiency of pre-sprouted sugarcane seedlings under water deficit. PLoS one 15:e0240847. https://doi.org/10.1371/journal.pone.0240847

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Alonso TAS, Barreto RF, Prado RM, de Souza JP, Carvalho RF (2020) Silicon spraying alleviates calcium deficiency in tomato plants, but Ca-EDTA is toxic. J Plant Nutr Soil Sci 183:659–664. https://doi.org/10.1002/jpln.202000055

    Article  CAS  Google Scholar 

  23. Oliveira KS, Prado RM, Guedes VHF (2020) Leaf spraying of manganese with silicon addition is agronomically viable for corn and sorghum plants. J Soil Sci Plant Nutr 20:872–880. https://doi.org/10.1002/jpln.202000055

    Article  CAS  Google Scholar 

  24. Camargo MS, Keeping MG (2021) Silicon in sugarcane: availability in soil, fertilization, and uptake. Silicon 13:3691–3701. https://doi.org/10.1007/s12633-020-00935-y

    Article  CAS  Google Scholar 

  25. Epstein E (2009) Silicon: its manifold roles in plants. Ann Appl Biol 155:155–160. https://doi.org/10.1111/j.1744-7348.2009.00343.x

    Article  CAS  Google Scholar 

  26. Fujii K, Shibata M, Kitajima K, Ichie T, Kitayama K, Turner BL (2018) Plant–soil interactions maintain biodiversity and functions of tropical forest ecosystems. Ecol Res 33:149–160. https://doi.org/10.1007/s11284-017-1511-y

    Article  CAS  Google Scholar 

  27. Jesus SD, Glaser B, Pellegrino EC (2019) Effect of biochar particle size on physical, hydrological and chemical properties of loamy and sandy tropical soils. Agronomy 9:165. https://doi.org/10.3390/agronomy9040165

    Article  CAS  Google Scholar 

  28. Meena VD, Dotaniya ML, Coumar V, Rajendiran S, Kundu S, Subba Rao A (2014) A case for silicon fertilization to improve crop yields in tropical soils. Proc Natl Acad Sci India Sect B: Biol Sci 84:505–518. https://doi.org/10.1007/s40011-013-0270-y

    Article  CAS  Google Scholar 

  29. Cahn M, Extension C (1993) Cation and nitrate leaching in an oxisol of the Brazilian Amazon. Agron J 85:334–340. https://doi.org/10.2134/agronj1993.00021962008500020032x

    Article  CAS  Google Scholar 

  30. Roy ED, Willig E, Richards PD, Martinelli LA, Vazquez FF, Pegorini L, Spera SA, Porder S (2017) Soil phosphorus sorption capacity after three decades of intensive fertilization in Mato Grosso, Brazil. Agric Ecosyst Environ 249:206–214. https://doi.org/10.1016/j.agee.2017.08.004

    Article  CAS  Google Scholar 

  31. Deus ACF, Mello RP, Cássia RFA, Oliveira RLL, Felisberto G (2020) Role of silicon and salicylic acid in the mitigation of nitrogen deficiency stress in rice plants. Silicon 12:997–1005. https://doi.org/10.1007/s12633-019-00195-5

    Article  CAS  Google Scholar 

  32. Pavlovic J, Kostic L, Bosnic P, Kirkby EA, Nikolic M (2021) Interactions of silicon with essential and beneficial elements in plants. Front Plant Sci 12:1224. https://doi.org/10.3389/fpls.2021.697592

    Article  Google Scholar 

  33. Malik MA, Wani AH, Mir SH, Rehman IU, Tahir L, Ahmad P, Rashid I (2021) Elucidating the role of silicon in drought stress tolerance in plants. Plant Physiol and Biochem 165:187–195

    Article  CAS  Google Scholar 

  34. Wilding LP, Smeck NE, Hall GF (1983) Pedogenesis and soil taxonomy: the soil orders. Elsevier

    Google Scholar 

  35. Raij BV et al (1997) Recomendações de adubação e calagem para o Estado de São Paulo. IAC, Campinas, pp 8–13

    Google Scholar 

  36. Malavolta E (1997) Avaliação do estado nutricional das plantas: princípios e aplicações. Potafos, Piracicaba

    Google Scholar 

  37. Korndörfer GH, Pereira HS, Nolla A (2004) Análise de silício: solo, planta e fertilizante. Uberlândia MG. Universidade Federal de Uberlândia. Boletim técnico, 2

  38. Barbosa JC, Maldonado Junior W (2015) AgroEstat: sistema para análises estatísticas de ensaios agronômicos. Jaboticabal, FCAV/UNESP. 396p

  39. Alin A (2010) Minitab. Wiley Interdisc. Rev. Comput. 2:723–727. https://doi.org/10.1002/wics.113

  40. Deus ACF, Büll LT, Guppy CN, Santos SDMC, Moreira LLQ (2020) Effects of lime and steel slag application on soil fertility and soybean yield under a no till-system. Soil Tillage Res 196:104422. https://doi.org/10.1016/j.still.2019.104422

    Article  Google Scholar 

  41. Gunnarsen KC, Schjoerring JK, Gómez-Muñoz B, de Neergaard A, Jensen LS (2022) Can silicon in glacial rock flour enhance phosphorus availability in acidic tropical soil? Plant Soil 477:1–18. https://doi.org/10.1007/s11104-022-05399-0

    Article  CAS  Google Scholar 

  42. Lata-Tenesaca LF, Prado RM, Piccolo MC, da Silva DL, da Silva JLF, Ajila-Celi GE (2022) Forms of application of silicon in quinoa and benefits involved in the association between productivity with grain biofortification. Sci Rep 12:1–9. https://doi.org/10.1038/s41598-022-17181-4

    Article  CAS  Google Scholar 

  43. Dhiman P, Rajora N, Bhardwaj S, Sudhakaran SS, Kumar A, Raturi G, Chakraborty K, Gupta OP, Devanna BN, Tripathi DK, Deshmukh R (2021) Fascinating role of silicon to combat salinity stress in plants: An updated overview. Plant Physiol Biochem 162:110–123. https://doi.org/10.1016/j.plaphy.2021.02.023

    Article  PubMed  CAS  Google Scholar 

  44. Yan G, Fan X, Zheng W, Gao Z, Yin C, Li T, Liang Y (2021) Silicon alleviates salt stress-induced potassium deficiency by promoting potassium uptake and translocation in rice (Oryza sativa L.). J Plant Physiol 258:153379

    Article  PubMed  Google Scholar 

  45. Sarah MMS, Prado RM, Teixeira GCM, de Souza Júnior JP, de Medeiros RLS, Barreto RF (2022) Silicon supplied via roots or leaves relieves potassium deficiency in maize plants. Silicon 14:773–782. https://doi.org/10.1007/s12633-020-00908-1

    Article  CAS  Google Scholar 

  46. Ali M, Afzal S, Parveen A, Kamran M, Javed MR, Abbasi GH, Malik Z, Riaz M, Ahmad S, Chattha MS, Ali M, Ali Q, Uddin MZ, Rizwan M, Ali S (2021) Silicon mediated improvement in the growth and ion homeostasis by decreasing Na+ uptake in maize (Zea mays L.) cultivars exposed to salinity stress. Plant Physiol Biochem 158:208–218. https://doi.org/10.1016/j.plaphy.2020.10.040

    Article  PubMed  CAS  Google Scholar 

  47. Xie K, Cakmak I, Wang S, Zhang F, Guo S (2021) Synergistic and antagonistic interactions between potassium and magnesium in higher plants. Crop J 9:249–256. https://doi.org/10.1016/j.cj.2020.10.005

    Article  Google Scholar 

  48. Sirisuntornlak N, Ullah H, Sonjaroon W, Anusontpornperm S, Arirob W, Datta S (2021) Interactive Effects of Silicon and Soil pH on Growth, Yield and Nutrient Uptake of Maize. Silicon 13:289–299. https://doi.org/10.1007/s12633-020-00427-z

    Article  CAS  Google Scholar 

  49. Buchelt AC, Teixeira GCM, Oliveira KS, Rocha AMS, Prado RM, Caione G (2020) Silicon contribution via nutrient solution in forage plants to mitigate nitrogen, potassium, calcium, magnesium, and sulfur deficiency. J Soil Sci Plant Nutr 20:1532–1548. https://doi.org/10.1007/s42729-020-00245-7

    Article  CAS  Google Scholar 

  50. Costa RF, Firmano RF, Colzato M, Crusciol CAC, Alleoni LR (2022) Sulfur speciation in a tropical soil amended with lime and phosphogypsum under long-term no-tillage system. Geoderma 406:115461. https://doi.org/10.1016/j.geoderma.2021.115461

    Article  CAS  Google Scholar 

  51. Laîné P, Coquerel R, Arkoun M, Trouverie J, Etienne P (2022) Assessing the Effect of Silicon Supply on Root Sulfur Uptake in S-Fed and S-Deprived Brassica napus. L Plants 11:1606. https://doi.org/10.3390/plants11121606

    Article  PubMed  CAS  Google Scholar 

  52. Vieira-Filho LO, Monteiro FA (2022) Silicon improves photosynthetic activity and induces antioxidant enzyme activity in Tanzania Guinea grass under copper toxicity. Plant Stress 3:100045. https://doi.org/10.1016/j.stress.2021.100045

    Article  CAS  Google Scholar 

  53. Oliveira RLL, Prado RM, Felisberto G, Checcio MV, Gratão PL (2019) Silicon Mitigates Manganese Deficiency Stress by Regulating the Physiology and Activity of Antioxidant Enzymes in Sorghum Plants. J Soil Sci Plant Nutr 19:524–534. https://doi.org/10.1007/s42729-019-00051-w

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Thanks are due to the Noble Alchem Pvt. Ltd company for donating the Si source. The authors would also like to thank the Master Scholarship granted to the first author by the Coordination for the Improvement of Higher Education Personnel (CAPES). We also thank our research group "silício no sistema solo-planta (SiSPlant)" for the partnership.

Funding

This study was financed in part by the Coordination for the Improvement of Higher Education Personnel – Brazil (CAPES) – Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization and methodology, Ana Paula Rodrigues da Silva and Dirceu Maximino Fernandes; formal analysis, Ana Paula Rodrigues da Silva; investigation and writing—original draft preparation, Ana Paula Rodrigues da Silva, Lucas Jónatan Rodrigues da Silva, Angélica Cristina Fernandes Deus, Dirceu Maximino Fernandes and Leonardo Theodoro Büll; funding acquisition, Dirceu Maximino Fernandes and Leonardo Theodoro Büll. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ana Paula Rodrigues da Silva.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

All authors agreed with the concentration and all of them gave explicit consent to submit.

Consent for Publication

We have the consent of the authors for the publication.

Conflicts of Interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 107 kb)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

da Silva, A.P.R., da Silva, L.J.R., Deus, A.C.F. et al. Silicon Application Methods Influence the Nutrient Uptake of Maize Plants in Tropical Soil. Silicon 15, 7327–7334 (2023). https://doi.org/10.1007/s12633-023-02592-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02592-3

Keywords

Navigation