Skip to main content

Advertisement

Log in

Silicon Supplied Via Roots or Leaves Relieves Potassium Deficiency in Maize Plants

  • Short Communication
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Purpose

The aim of this study was to determine whether silicon (Si) supplied via nutrient solution or foliar spray is nutritionally and physiologically efficient in mitigating potassium (K) deficiency in maize plants.

Methods

To that end, an experiment was conducted in a greenhouse with maize plants grown in a hydroponic system. The treatments included two levels of K, i.e. K deficient (0.2 mmol L−1 of K) and K-sufficient (6 mmol L−1 of K). Under both these conditions, Si was supplied through stabilized potassium sodium silicate via nutrient solution (2 mmol L−1 of Si) or foliar spray (5.3 mmol L−1 of Si) and control (0 mmol L−1 of Si), using a completely randomized design and four repetitions.

Results

Potassium deficiency without the addition of Si showed less accumulation of K and Si and lower levels of photosynthetic pigments. It also caused the reduction in gas exchange and, consequently, a reduction in vegetative development. However, Si relieved K-deficiency stress in maize plants, since it improved nutritional, physiological and growth variables.

Conclusion

The application of Si to K-deficient maize plants improved their water use efficiency, their chlorophyll and carotenoid contents, and their dry matter production. This effect was more evident in the treatment of Si via roots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Data Availability

Not applicable.

References

  1. Chen D, Cao B, Wang S, Liu P, Deng X, Yin L, Zhang S (2016b) Silicon moderated the K deficiency by improving the plant-water status in sorghum. Sci Rep 6. https://doi.org/10.1038/srep22882

  2. Prado RM (2008) Nutrição de plantas. UNESP. ed, Jaboticabal

    Google Scholar 

  3. Chen D, Cao B, Qi L, Yin L, Wang S, Deng X (2016a) Silicon-moderated K-deficiency-induced leaf chlorosis by decreasing putrescine accumulation in sorghum. Ann Bot 118:305–315. https://doi.org/10.1093/aob/mcw111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Miao BH, Han XG, Zhang WH (2010) The ameliorative effect of silicon on soybean seedlings grown in potassium-deficient medium. Ann Bot 105:967–973. https://doi.org/10.1093/aob/mcq063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Doncheva S, Poschenrieder C, Stoyanova Z, Georgieva K, Velichkova M, Barceló J (2009) Silicon amelioration of manganese toxicity in Mn-sensitive and Mn-tolerant maize varieties. Environ Exper Bot 65:189–197. https://doi.org/10.1016/j.envexpbot.2008.11.006

    Article  CAS  Google Scholar 

  6. Gao X, Zou C, Wang L (2006) Silicon decreases transpiration rate and conductance from stomata of maize plants. J Plant Nutr 29:1637–1647. https://doi.org/10.1080/01904160600851494

    Article  CAS  Google Scholar 

  7. Ma JF (2004) Role of silicon in enhancing the resistance of plants to biotic and abiotic stresses. Soil Sci Plant Nutr 50:11–18. https://doi.org/10.1080/00380768.2004.10408447

    Article  CAS  Google Scholar 

  8. Hosseini SA, Maillard A, Hajirezaei MR, Ali N, Schwarzenberg A, Jamois F, Yvin JC (2017) Induction of barley silicon transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated starch and ABA homeostasis under osmotic stress and concomitant potassium deficiency. Front Plant Sci 8. https://doi.org/10.3389/fpls.2017.01359

  9. Mitani N, Yamaji N, Ma JF (2009) Identification of maize silicon influx transporters. Plant Cell Physiol 50:5–12. https://doi.org/10.1093/pcp/pcn110

    Article  CAS  PubMed  Google Scholar 

  10. Alvarenga RC, Novotny EH, Pereira Filho I, Santana DP, Pereira FTF, Hernani LC (2010) Cultivo do milho. JCC Cruz (Ed.). Sete Lagoas: Embrapa Milho e Sorgo

  11. Hoagland DR, Arnon DI (1950) The water-culture method for growing plants without soil. Circ Calif Agric Exp Stn 347

  12. Lichtenthaler HK, Welburn AR (1983) Determination of total carotenoids and chlorophyll a and b of leaf extracts in different solvents. Biochem Soc Trans 603(11):591–593

    Article  Google Scholar 

  13. Dionisio-Sese ML, Tobita S (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135:1–9. https://doi.org/10.1016/S0168-9452(98)00025-9

    Article  CAS  Google Scholar 

  14. González L, González-Vilar M (2001) Determination of relative water content. In: Reigosa MJ (ed) Handbook of plant ecophysiology techniques. Kluwer Academic, Dordrecht, pp 207–212

    Google Scholar 

  15. Harris GA, Campbell GS (1989) Automated quantification of roots using a simple image analyzer. Agron J 81:935–938. https://doi.org/10.2134/agronj1989.00021962008100060017x

    Article  Google Scholar 

  16. Korndörfer GH, Pereira HS, Nola A (2004) Análise de silício: solo, planta e fertilizante. Uberlândia: GPSi-ICIAG-UFU (Boletim técnico, 2)

  17. Zasoski RJ, Burau RG (1977) A rapid nitric-perchloricacid digestion method for multi-element tissue analysis. Commun Soil Sci Plant Anal 8:425–436. https://doi.org/10.1080/00103627709366735

    Article  CAS  Google Scholar 

  18. Siddiqi MY, Glass AD (1981) Utilization index: a modified approach to the estimation and comparison of nutrient utilization efficiency in plants. J Plant Nutr 4:289–302. https://doi.org/10.1080/01904168109362919

    Article  Google Scholar 

  19. SAS Institute. SAS/STAT User’s guide, version 9.2. Cary, 2008. 584 p

  20. Kanai S, Moghaieb RE, El-shemy HA, Panigrahi R, Mohapatra PK, Ito J, Nguyen NT, Saneoka H, Fujita K (2011) Plant science potassium deficiency affects water status and photosynthetic rate of the vegetative sink in green house tomato prior to its effects on source activity. Plant Sci 180:368–374. https://doi.org/10.1016/j.plantsci.2010.10.011

    Article  CAS  PubMed  Google Scholar 

  21. Hafsi C, Debez A, Abdelly C (2014) Potassium deficiency in plants: effects and signaling cascades. Acta Physiol Plant 36:1055–1070. https://doi.org/10.1007/s11738-014-1491-2

    Article  CAS  Google Scholar 

  22. Liang Y (1999) Effects of silicon on enzyme activity and sodium, potassium and calcium concentration in barley under salt stress. Plant Soil 209:217–224. https://doi.org/10.1023/A:1004526604913

    Article  CAS  Google Scholar 

  23. Abbas T, Mukhtar R, Muhammad B, Shahid A (2015) Silicon-induced alleviation of NaCl toxicity in okra (Abelmoschus esculentus) is associated with enhanced photosynthesis, osmoprotectants and antioxidant metabolism. Acta Physiol Plant 37. https://doi.org/10.1007/s11738-014-1768-5

  24. Shahid MA, Balal RM, Pervez MA, Abbas T, Aqeel MA, Javaid MM, Garcia-sanchez F (2015) Foliar spray of phyto-extracts supplemented with silicon: an efficacious strategy to alleviate the salinity-induced deleterious effects in pea (Pisum sativum L.). Turk J Bot. https://doi.org/10.3906/bot-1406-84

  25. Crusciol CAC, Soratto RP, Castro GSA, Costa CHMD, Ferrari Neto J (2013) Foliar application of stabilized silicic acid on soybean, common bean, and peanut. Rev Ciênc Agron 44:404–410. https://doi.org/10.1590/S1806-66902013000200025

    Article  Google Scholar 

  26. Ding YF (2006) Mechanisms of silicon-enhancement of drought tolerance in wheat seedlings. Nanjing Agricultural University, MSc thesis

    Google Scholar 

  27. Foyer CH, Leiandais M, Kunert KJ (1994) Special review Photooxidative stress in plants. Physiol Plant 92:696–717. https://doi.org/10.1111/j.1399-3054.1994.tb03042.x

    Article  CAS  Google Scholar 

  28. Havaux M (1998) Carotenoids as membrane stabilizers in chloroplasts. Trends Plant Sci 3:147–151. https://doi.org/10.1016/S1360-1385(98)01200-X

    Article  Google Scholar 

  29. Mali M, Aery NC (2009) Effect of silicon on growth, biochemical constituents, and mineral nutrition of cowpea. Commun Soil Sci Plant Anal 40:1041–1052. https://doi.org/10.1080/00103620902753590

    Article  CAS  Google Scholar 

Download references

Funding

This study was financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Contributions

Not applicable.

Corresponding author

Correspondence to Marcilene Machado dos Santos Sarah.

Ethics declarations

Conflict of Interest

Not applicable.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

dos Santos Sarah, M.M., de Mello Prado, R., Teixeira, G.C.M. et al. Silicon Supplied Via Roots or Leaves Relieves Potassium Deficiency in Maize Plants. Silicon 14, 773–782 (2022). https://doi.org/10.1007/s12633-020-00908-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00908-1

Keywords

Navigation