Skip to main content

Advertisement

Log in

Investigation of Nano SiO2 Filler Loading on Mechanical and Flammability Properties of Jute-Based Hybrid Polypropylene Composites

  • Research
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Natural fibre-based nanocomposite is a revolutionary substance developed in the past few years that is employed extensively in constructive and dynamic sectors due to its excellent strength relative to weight proportion and lightweight. The present investigation looked at how silicon nanoparticles affected the polypropylene (PP)/jute fibre's moisture absorption, mechanical properties, flammability, and dynamic mechanical features. Injection moulding was used to create composite materials made from PP, jute fibre, and silicon. The outcomes showed that increasing the weight of nano silicon di oxide (SiO2) nanoparticles up to 6% enhanced the modulus of elasticity (2100 MPa), tension strength (38.24 MPa), and elongation at breakage (1.67%) of hybrids. The bending strength and modulus of clean PP/jute were 34.19 MPa and 2160 MPa, respectively, while the bending strength and modulus of PP/jute/SiO2 were 51.78 MPa and 2780 MPa, respectively, demonstrating a 28.18% increase in bending strength. With increased nanoparticle loading, it was additionally demonstrated that water uptake (8.9%) and swollen thickness (2.01%) have significantly decreased. NanoSiO2 was added to composites to enhance their dynamic mechanical (loss and storage modulus of 4.92 & 12.80 MPa) behavior and fire characteristics (17 mm/min combustion rate, char residue of 29%). The 6 wt.% of SiO2 nanoparticles that exist in the jute fibre and PP specimens have not been exfoliated, so the manner in which they disperse has to be improved (2Ѳ = 2.32º, d-spacing of 39.01 nm and intercorrelation of 23.41%), according to X-ray diffraction (XRD) examinations. It is asserted that the char barrier's durability is significantly influenced by the chemical mixture's makeup and pattern of dispersion. The creation of char shields with higher nanosilicon dioxide content prevents burning and necessitates higher temperatures for disintegration.

Graphical Abstract

Graphical abstract of Nano SiO2/Jute Based Hybrid Polypropylene composites

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data used to support the findings of this study are included in the article. Should further data or information be required, these are available from the corresponding author upon request.

References

  1. Khalid MY, Al RA, Arif ZU et al (2021) Characterization of failure strain in fiber reinforced composites: Under on-axis and off-axis loading. Crystals 11:1–11. https://doi.org/10.3390/cryst11020216

    Article  CAS  Google Scholar 

  2. Singh K, Ohlan A, Saini P, Dhawan SK (2008) composite – super paramagnetic behavior and variable range hopping 1D conduction mechanism – synthesis and characterization. Polym Adv Technol 229–236. https://doi.org/10.1002/pat

  3. Khalid MY, Al Rashid A, Arif ZU et al (2021) Tensile strength evaluation of glass/jute fibers reinforced composites: An experimental and numerical approach. Results Eng 10:100232. https://doi.org/10.1016/j.rineng.2021.100232

    Article  CAS  Google Scholar 

  4. Karim N, Sarker F, Afroj S, et al (2021) Sustainable and Multifunctional Composites of Graphene-Based Natural Jute Fibers. Adv Sustain Syst 5. https://doi.org/10.1002/adsu.202000228

  5. Khalid MY, Al Rashid A, Arif ZU et al (2021) Natural fiber reinforced composites: Sustainable materials for emerging applications. Results Eng 11:100263. https://doi.org/10.1016/j.rineng.2021.100263

    Article  CAS  Google Scholar 

  6. Khalid MY, Imran R, Arif ZU et al (2021) Developments in chemical treatments, manufacturing techniques and potential applications of natural-fibers-based biodegradable composites. Coatings 11:1–18. https://doi.org/10.3390/coatings11030293

    Article  CAS  Google Scholar 

  7. Khalid MY, Arif ZU, Sheikh MF, Nasir MA (2021) Mechanical characterization of glass and jute fiber-based hybrid composites fabricated through compression molding technique. IntJ Mater Form 14:1085–1095. https://doi.org/10.1007/s12289-021-01624-w

    Article  Google Scholar 

  8. Gogna E, Kumar R, Anurag et al (2019) A comprehensive review on jute fiber reinforced composites. Springer, Singapore

    Book  Google Scholar 

  9. Velmurugan G, Babu K, Nagaraj M, Kumar AJP (2023) Investigations of Flame Retardancy, Mechanical and Thermal Properties of Woven Hemp/PP Hybrid Composite for Insulating Material Reinforced with Synthetic Silicon and Zinc Oxides. Silicon. https://doi.org/10.1007/s12633-023-02408-4

  10. Alves C, Ferrão PMC, Silva AJ et al (2010) Ecodesign of automotive components making use of natural jute fiber composites. J Clean Prod 18:313–327. https://doi.org/10.1016/j.jclepro.2009.10.022

    Article  CAS  Google Scholar 

  11. Khan RA, Khan MA, Zaman HU et al (2010) Comparative studies of mechanical and interfacial properties between jute and e-glass fiber-reinforced polypropylene composites. J Reinf Plast Compos 29:1078–1088. https://doi.org/10.1177/0731684409103148

    Article  CAS  Google Scholar 

  12. Khalili P, Liu X, Zhao Z, Blinzler B (2019) Fully biodegradable composites: Thermal, flammability, moisture absorption and mechanical properties of Natural fibre-reinforced composites with nano-hydroxyapatite. Materials 12:1–13. https://doi.org/10.3390/ma12071145

    Article  CAS  Google Scholar 

  13. Kim NK, Dutta S, Bhattacharyya D (2018) A review of flammability of natural fibre reinforced polymeric composites. Compos Sci Technol 162:64–78. https://doi.org/10.1016/j.compscitech.2018.04.016

    Article  CAS  Google Scholar 

  14. Shah AUR, Prabhakar MN, Il SJ (2017) Current advances in the fire retardancy of natural fiber and bio-based composites – A review. Int J Precis Eng Manuf - Green Technol 4:247–262. https://doi.org/10.1007/s40684-017-0030-1

    Article  Google Scholar 

  15. Chapple S, Anandjiwala R (2010) Flammability of natural fiber-reinforced composites and strategies for fire retardancy: A review. J Thermoplast Compos Mater 23:871–893. https://doi.org/10.1177/0892705709356338

    Article  CAS  Google Scholar 

  16. Munikenche Gowda T, Naidu ACB, Chhaya R (1999) Some mechanical properties of untreated jute fabric-reinforced polyester composites. Compos A Appl Sci Manuf 30:277–284. https://doi.org/10.1016/S1359-835X(98)00157-2

    Article  Google Scholar 

  17. Ashok Kumar M, Ramachandra Reddy G, Siva Bharathi Y et al (2010) Frictional coefficient, hardness, impact strength, and chemical resistance of reinforced sisal-glass fiber epoxy hybrid composites. J Compos Mater 44:3195–3202. https://doi.org/10.1177/0021998310371551

    Article  CAS  Google Scholar 

  18. Maurya AK, Gogoi R, Manik G (2021) Mechano-chemically activated fly-ash and sisal fiber reinforced PP hybrid composite with enhanced mechanical properties. Cellulose 28:8493–8508. https://doi.org/10.1007/s10570-021-03995-4

    Article  CAS  Google Scholar 

  19. Annie Paul S, Boudenne A, Ibos L et al (2008) Effect of fiber loading and chemical treatments on thermophysical properties of banana fiber/polypropylene commingled composite materials. Compos A Appl Sci Manuf 39:1582–1588. https://doi.org/10.1016/J.COMPOSITESA.2008.06.004

    Article  Google Scholar 

  20. Dilfi KFA, Balan A, Bin H et al (2018) Effect of surface modification of jute fiber on the mechanical properties and durability of jute fiber-reinforced epoxy composites. Polym Compos 39:E2519–E2528. https://doi.org/10.1002/pc.24817

    Article  CAS  Google Scholar 

  21. Wang H, Memon H, Hassan EAM, et al (2019) Effect of jute fiber modification on mechanical properties of jute fiber composite. Materials 12. https://doi.org/10.3390/ma12081226

  22. Rajeshkumar G, Seshadri SA, Ramakrishnan S et al (2021) A comprehensive review on natural fiber/nano-clay reinforced hybrid polymeric composites: Materials and technologies. Polym Compos 42:3687–3701. https://doi.org/10.1002/pc.26110

    Article  CAS  Google Scholar 

  23. Saba N, Tahir PM, Jawaid M (2014) A review on potentiality of nano filler/natural fiber filled polymer hybrid composites. Polymers 6:2247–2273. https://doi.org/10.3390/polym6082247

    Article  CAS  Google Scholar 

  24. Sliding wear performance of nano-SiO2/short carbon fiber/epoxy hybrid composites - ScienceDirect. https://www.sciencedirect.com/science/article/abs/pii/S0043164808003712?casa_token=D0EEXTTNipIAAAAA:5aTNXS0oJSeWtu2ypvOmu0VJrsofUhyzH2YfEity7ggA8dgLoecpRJAWiuHMDTcWR6RsnMbhcv8U. Accessed 30 Jul 2022

  25. Pappu A, Thakur VK (2017) Towards sustainable micro and nano composites from fly ash and natural fibers for multifunctional applications. Vacuum 146:375–385. https://doi.org/10.1016/j.vacuum.2017.05.026

    Article  CAS  Google Scholar 

  26. Essabir H, Boujmal R, Bensalah MO et al (2016) Mechanical and thermal properties of hybrid composites: Oil-palm fiber/clay reinforced high density polyethylene. Mech Mater 98:36–43. https://doi.org/10.1016/j.mechmat.2016.04.008

    Article  Google Scholar 

  27. Velmurugan G, Siva Shankar V, KalilRahiman M et al (2023) Experimental Investigation of High Filler Loading of SiO2 on the Mechanical and Dynamic Mechanical Analysis of Natural PALF fibre-Based Hybrid Composite. Silicon. https://doi.org/10.1007/s12633-023-02464-w

    Article  Google Scholar 

  28. Nawafleh N, Elibol FKE, Aljaghtham M et al (2020) Static and dynamic mechanical performance of short Kevlar fiber reinforced composites fabricated via direct ink writing. J Mater Sci 55:11284–11295. https://doi.org/10.1007/s10853-020-04826-w

    Article  CAS  Google Scholar 

  29. Velmurugan G,  Natrayan L (2023) Experimental Investigations of Moisture Diffusion and Mechanical Properties of Interply Rearrangement of Glass/Kevlar-based hybrid Composites under Cryogenic Environment. J Mater Res Technol. https://doi.org/10.1016/J.JMRT.2023.02.089

  30. Correia CA, De Oliveira LM, Valera TS (2017) The influence of bleached jute fiber filler on the properties of vulcanized natural rubber. Mater Res 20:472–478. https://doi.org/10.1590/1980-5373-mr-2017-0126

    Article  Google Scholar 

  31. Nourbakhsh A, Farhani F, Ashori A (2011) Nano-SiO 2 filled rice husk / polypropylene composites : Physico-mechanical properties. Ind Crops Prod 33:183–187. https://doi.org/10.1016/j.indcrop.2010.10.010

    Article  CAS  Google Scholar 

  32. Khalid MY, Nasir MA, Ali A et al (2020) Experimental and numerical characterization of tensile property of jute/carbon fabric reinforced epoxy hybrid composites. SN Appl Sci 2:1–10. https://doi.org/10.1007/s42452-020-2403-2

    Article  CAS  Google Scholar 

  33. Kuppuraj A, Angamuthu M (2022) Investigation of mechanical properties and free vibration behavior of graphene/basalt nano filler banana/sisal hybrid composite. Polym Polym Compos 30:1–12. https://doi.org/10.1177/09673911211066719

    Article  CAS  Google Scholar 

  34. Jesuarockiam N, Jawaid M, Zainudin ES, et al (2019) Enhanced thermal and dynamic mechanical properties of synthetic/natural hybrid composites with graphene nanoplateletes. Polymers 11. https://doi.org/10.3390/polym11071085

  35. Farsi M (2017) Effect of Nano-SiO2 and Bark Flour Content on the Physical and Mechanical Properties of Wood-Plastic Composites. J Polym Environ 25:308–314. https://doi.org/10.1007/s10924-016-0813-4

    Article  CAS  Google Scholar 

  36. Ozsoy I, Demirkol A, Mimaroglu A et al (2015) The influence of micro- And nano-filler content on the mechanical properties of epoxy composites. Strojniski Vestnik/J Mech Eng 61:601–609. https://doi.org/10.5545/sv-jme.2015.2632

    Article  Google Scholar 

  37. Khalid MY, Arif ZU, Al Rashid A (2022) Investigation of tensile and flexural behavior of green composites along with their impact response at different energies. Int J Precis Eng Manuf-Green Technol 9:1399–1410

    Article  Google Scholar 

  38. Nahar S, Khan RA, Dey K et al (2012) Comparative studies of mechanical and interfacial properties between jute and bamboo fiber-reinforced polypropylene-based composites. J Thermoplast Compos Mater 25:15–32. https://doi.org/10.1177/0892705711404725

    Article  Google Scholar 

  39. Li L, Zou H, Shao L et al (2005) Study on mechanical property of epoxy composite filled with nano-sized calcium carbonate particles. J Mater Sci 40:1297–1299. https://doi.org/10.1007/s10853-005-6956-7

    Article  CAS  Google Scholar 

  40. Pourjavadi A, Fakoorpoor SM, Khaloo A, Hosseini P (2012) Improving the performance of cement-based composites containing superabsorbent polymers by utilization of nano-SiO2 particles. Mater Des 42:94–101. https://doi.org/10.1016/j.matdes.2012.05.030

    Article  CAS  Google Scholar 

  41. Kumar D, Shahapurkar K, Venkatesh C, et al (2022) Influence of graphene nano fillers and carbon nano tubes on the mechanical and thermal properties of hollow glass microsphere epoxy composites. Processes 10. https://doi.org/10.3390/pr10010040

  42. Article R, Ramesh M, Rajeshkumar LN, et al (2022) In fl uence of fi ller material on properties of fi ber - reinforced polymer composites : A review. 898–916

  43. Fernandes Medeiros de Queiroz H, Banea MD, Kioshi Kawasaki Cavalcanti D, De Souza e Silva Neto J (2021) The effect of multiscale hybridization on the mechanical properties of natural fiber-reinforced composites. J Appl Polym Sci 138:1–12. https://doi.org/10.1002/app.51213

    Article  CAS  Google Scholar 

  44. Natrayan L, Kaliappan S, Sethupathy BS, et al (2022) Effect of Mechanical Properties on Fibre Addition of Flax and Graphene-Based Bionanocomposites. Int J Chem Eng 2022. https://doi.org/10.1155/2022/5086365

  45. Agarwal S, Patidar D, Saxena NS (2012) Effect of ZnS Nanofiller and Temperature on Mechanical Properties of Poly (methyl methacrylate). J Appl Polym Sci 123:2431–2438. https://doi.org/10.1002/app.34800

    Article  CAS  Google Scholar 

  46. Kord B (2012) Effect of nanoparticles loading on properties of polymeric composite based on Hemp Fiber/Polypropylene. J Thermoplast Compos Mater 25:793–806. https://doi.org/10.1177/0892705711412815

    Article  CAS  Google Scholar 

  47. Saba N, Paridah AK, Ibrahim NA (2016) Dynamic mechanical properties of oil palm nano filler/kenaf/epoxy hybrid nanocomposites. Constr Build Mater 124:133–138. https://doi.org/10.1016/j.conbuildmat.2016.07.059

    Article  CAS  Google Scholar 

  48. Ponnusamy M, Natrayan L, Patil PP, et al (2022) Multiresponse Optimization of Mechanical Behaviour of Calotropis gigantea/Nano-Silicon-Based Hybrid Nanocomposites under Cryogenic Environment. Adsorpt Sci Technol 2022. https://doi.org/10.1155/2022/4138179

  49. Kord B (2010) Effect of Organo-Modified Layered Silicates on Flammability Performance of High-Density Polyethylene/ Rice Husk Flour Nanocomposite. Wiley Online Library. https://doi.org/10.1002/app.33215.

  50. Malik MA, Sarkar M, Xu S, Li Q (2019) Effect of PVA/SiO2 NPs additive on the structural, durability, and fire resistance properties of geopolymers. Appl Sci (Switzerland) 9. https://doi.org/10.3390/app9091953

  51. Qin H, Su Q, Zhang S et al (2003) Thermal stability and flammability of polyamide 66/montmorillonite nanocomposites. Polymer 44:7533–7538. https://doi.org/10.1016/j.polymer.2003.09.014

    Article  CAS  Google Scholar 

  52. Weil ED, Levchik SV (2008) Flame retardants in commercial use or development for polyolefins. J Fire Sci 26:5–43. https://doi.org/10.1177/0734904107083309

  53. Ribeiro MCS, Sousa SPB, Nóvoa PRO (2015) An Investigation on Fire and Flexural Mechanical Behaviors of Nano and Micro Polyester Composites Filled with SiO2 and Al2O3 Particles. Mater Today: Proc 2:8–19. https://doi.org/10.1016/j.matpr.2015.04.002

    Article  Google Scholar 

  54. Pang H, Wang X, Zhu X et al (2015) Nanoengineering of brucite@SiO2 for enhanced mechanical properties and flame retardant behaviors. Polym Degrad Stab 120:410–418. https://doi.org/10.1016/j.polymdegradstab.2015.08.002

    Article  CAS  Google Scholar 

  55. Sanjeevi S, Shanmugam V, Kumar S et al (2021) Effects of water absorption on the mechanical properties of hybrid natural fibre/phenol formaldehyde composites. Sci Rep 11:1–11. https://doi.org/10.1038/s41598-021-92457-9

    Article  CAS  Google Scholar 

  56. Ganesan V, Kaliyamoorthy B (2020) Utilization of Taguchi Technique to Enhance the Interlaminar Shear Strength of Wood Dust Filled Woven Jute Fiber Reinforced Polyester Composites in Cryogenic Environment. J Nat Fibers. https://doi.org/10.1080/15440478.2020.1789021

    Article  Google Scholar 

  57. Natrayan L, Kumar PVA, Baskara Sethupathy S, et al (2022) Water Retention Behaviour and Fracture Toughness of Coir/Pineapple Leaf Fibre with Addition of Al2O3Hybrid Composites under Ambient Conditions. Adsorpt Sci Technol 2022. https://doi.org/10.1155/2022/7209761

  58. Natrayan L, Veeman D, Baskara Sethupathy S et al (2022) Influence of Nanosilica Particle Addition on Mechanical and Water Retention Properties of Natural Flax- and Sisal-Based Hybrid Nanocomposites under NaOH Conditions. Adsorpt Sci Technol 2022:1–11. https://doi.org/10.1155/2022/4026495

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank the Institute of Agricultural Engineering, Saveetha School of Engineering (SIMATS), Tamil Nadu, India for the technical assistance.

Author information

Authors and Affiliations

Authors

Contributions

Velmurugan G and Jasgurpreet Singh: Conceptualization, Methodology.

Muhammed Abraar S.A, Sathish R and Senthil Murugan S: Writing an original draft.

Suresh Kumar S and Nagaraj M: Investigation, Review.

Elil Raja D and Siva Shankar V: Testing and Evaluations.

Corresponding author

Correspondence to Velmurugan G..

Ethics declarations

Ethics Approval

Not applicable.

Conflicts of Interest

Nil.

Consent to Participate

Not applicable.

Competing Interests

Nil.

Consent for Publication

Yes. All permission granted.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

G., V., Chohan, J.S., S. A., M.A. et al. Investigation of Nano SiO2 Filler Loading on Mechanical and Flammability Properties of Jute-Based Hybrid Polypropylene Composites. Silicon 15, 7247–7263 (2023). https://doi.org/10.1007/s12633-023-02578-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02578-1

Keywords

Navigation