Skip to main content

Advertisement

Log in

CO2 Capture by Metal-Decorated Silicon Carbide Nanotubes

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Carbon dioxide (CO2) emission from continuously growing industries is one of the biggest global issues facing mankind as CO2 harms the environment and human health. To avoid the hazards of CO2, the development of materials for the efficient capture of CO2 is in high demand. Owing to the high surface area, nanotubes have a great potential for CO2 capture. In particular, silicon carbide nanotubes (SiCNTs) with large and partially heteropolar bonds are promising materials for CO2 capture, and extensive studies in this direction are needed. Here, a study on the CO2 capture behavior of metal (Cu, Pd and Ti) decorated SiCNTs using first principle calculations based on density functional theory is reported. The CO2 capture properties are investigated by calculations of band structure, the density of states (DOS), adsorption energy, and charge transfer. The findings show that CO2 adsorption on Cu-decorated SiCNT undergoes spontaneous exothermic reaction while the reactions are endothermic on Pd and Ti-decorated SiCNTs with notable change of the band structure and density of states of all nanotubes. Interestingly, analyses of adsorption energies show the chemisorptions of CO2 in Cu and Pd-decorated SiCNTs with high adsorption energies and the physisorption of CO2 in Ti-decorated SiCNT with low adsorption energy. The study underscores the potential of metal-decorated SiCNTs for efficient CO2 capture technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

All data generated or analysed during this study are included in this published article.

References

  1. Yu KMK, Curcic I, Gabriel J, Tsang SCE (2008) Recent advances in CO2 capture and utilization. ChemSusChem: Chem Sustain Energ Mater 1(11):893–9

  2. Yu C-H, Huang C-H, Tan C-S (2012) A review of CO2 capture by absorption and adsorption. Aerosol and Air Quality Research 12(5):745–769

    Article  CAS  Google Scholar 

  3. Koytsoumpa EI, Bergins C, Kakaras E (2018) The CO2 economy: Review of CO2 capture and reuse technologies. The Journal of Supercritical Fluids 132:3–16

    Article  CAS  Google Scholar 

  4. Ganji MD, Jameh-Bozorgi S, Rezvani M (2016) A comparative study of structural and electronic properties of formaldehyde molecule on monolayer honeycomb structures based on vdW-DF prospective. Appl Surf Sci 384:175–181

    Article  CAS  Google Scholar 

  5. Ganji MD, Rezvani M (2013) Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation. J Mol Model 19:1259–1265

    Article  CAS  PubMed  Google Scholar 

  6. Ganji M, Seyed-Aghaei N, Taghavi M, Rezvani M, Kazempour F (2011) Ammonia adsorption on SiC nanotubes: a density functional theory investigation. Fullerenes, Nanotubes, Carbon Nanostruct 19(4):289–299

    Article  CAS  Google Scholar 

  7. Singh RS (2022) Sulfur-doped silicon carbide nanotube as a sensor for detecting liquefied petroleum gas at room temperature. Diam Relat Mater 124:108932

    Article  CAS  Google Scholar 

  8. Chatterjee S, Jeevanandham S, Mukherjee M, Vo D-VN, Mishra V (2021) Significance of re-engineered zeolites in climate mitigation–A review for carbon capture and separation. J Environ Chem Eng 9(5):105957

    Article  CAS  Google Scholar 

  9. Khdary NH, Alayyar AS, Alsarhan LM, Alshihri S, Mokhtar M (2022) Metal oxides as catalyst/supporter for CO2 capture and conversion, review. Catalysts 12(3):300

    Article  CAS  Google Scholar 

  10. Li L, Jung HS, Lee JW, Kang YT (2022) Review on applications of metal–organic frameworks for CO2 capture and the performance enhancement mechanisms. Renew Sustain Energy Rev 162:112441

    Article  CAS  Google Scholar 

  11. Su F, Lu C, Cnen W, Bai H, Hwang JF (2009) Capture of CO2 from flue gas via multiwalled carbon nanotubes. Sci Total Environ 407(8):3017–3023

    Article  CAS  PubMed  Google Scholar 

  12. Choi H, Park YC, Kim Y-H, Lee YS (2011) Ambient carbon dioxide capture by boron-rich boron nitride nanotube. J Am Chem Soc 133(7):2084–2087

    Article  CAS  PubMed  Google Scholar 

  13. Balasubramanian R, Chowdhury S (2015) Recent advances and progress in the development of graphene-based adsorbents for CO2 capture. Journal of Materials Chemistry A 3(44):21968–21989

    Article  CAS  Google Scholar 

  14. Chowdhury S, Balasubramanian R (2016) Three-dimensional graphene-based porous adsorbents for postcombustion CO2 capture. Ind Eng Chem Res 55(29):7906–7916

    Article  CAS  Google Scholar 

  15. Singh RS, Li D, Xiong Q, Santoso I, Yu X, Chen W et al (2016) Anomalous photoresponse in the deep-ultraviolet due to resonant excitonic effects in oxygen plasma treated few-layer graphene. Carbon 106:330–335

    Article  CAS  Google Scholar 

  16. Singh RS, Gautam A, Rai V (2019) Graphene-based bipolar plates for polymer electrolyte membrane fuel cells. Front Mater Sci 13(3):217–241

    Article  Google Scholar 

  17. Singh RS, Jansen M, Ganguly D, Kulkarni GU, Ramaprabhu S, Choudhary SK et al (2022) Shellac derived graphene films on solid, flexible, and porous substrates for high performance bipolar plates and supercapacitor electrodes. Renewable Energy 181:1008–1022

    Article  CAS  Google Scholar 

  18. Cinke M, Li J, Bauschlicher CW Jr, Ricca A, Meyyappan M (2002) CO2 adsorption in single-walled carbon nanotubes. Chem Phys Lett 376(5–6):761–766

    Google Scholar 

  19. Quinonero D, Frontera A, Deya PM (2012) Feasibility of single-walled carbon nanotubes as materials for CO2 adsorption: a DFT study. The Journal of Physical Chemistry C 116(39):21083–21092

    Article  CAS  Google Scholar 

  20. Hsu S-C, Lu C, Su F, Zeng W, Chen W (2010) Thermodynamics and regeneration studies of CO2 adsorption on multiwalled carbon nanotubes. Chem Eng Sci 65(4):1354–1361

    Article  CAS  Google Scholar 

  21. Du A, Sun C, Zhu Z, Lu G, Rudolph V, Smith SC (2009) The effect of Fe doping on adsorption of CO2/N2 within carbon nanotubes: a density functional theory study with dispersion corrections. Nanotechnology 20(37):375701

    Article  CAS  PubMed  Google Scholar 

  22. Shao P, Kuang X-Y, Ding L-P, Yang J, Zhong M-M (2013) Can CO2 molecule adsorb effectively on Al-doped boron nitride single walled nanotube? Appl Surf Sci 285:350–356

    Article  CAS  Google Scholar 

  23. Singh RS (2015) Influence of oxygen impurity on electronic properties of carbon and boron nitride nanotubes: A comparative study. AIP Adv 5(11):117150

    Article  Google Scholar 

  24. Keller L, Ohs B, Lenhart J, Abduly L, Blanke P, Wessling M (2018) High capacity polyethylenimine impregnated microtubes made of carbon nanotubes for CO2 capture. Carbon 126:338–345

    Article  CAS  Google Scholar 

  25. Lu C, Bai H, Wu B, Su F, Hwang JF (2008) Comparative study of CO2 capture by carbon nanotubes, activated carbons, and zeolites. Energy Fuels 22(5):3050–3056

    Article  CAS  Google Scholar 

  26. Norouzi AM, Kojabad ME, Chapalaghi M, Hosseinkhani A, Lay EN (2022) Polyester-based polyurethane mixed-matrix membranes incorporating carbon nanotube-titanium oxide coupled nanohybrid for carbon dioxide capture enhancement: Molecular simulation and experimental study. J Mol Liq 360:119540

    Article  CAS  Google Scholar 

  27. Nguyen TTH, Le Minh C, Nguyen NH (2017) A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe Co, Ni) carbon nanotube. Comput Theor Chem 1100:46–51

    Article  CAS  Google Scholar 

  28. Zhou H, Xie J, Ban S (2015) Insights into the ultrahigh gas separation efficiency of Lithium doped carbon nanotube membrane using carrier-facilitated transport mechanism. J Membr Sci 493:599–604

    Article  CAS  Google Scholar 

  29. Lima KAL, Cunha WFd, Monteiro FF, Enders BG (2019) Adsorption of carbon dioxide and ammonia in transition metal–doped boron nitride nanotubes. J Mol Model 25(12):1–7

    Article  Google Scholar 

  30. Pham-Huu C, Keller N, Ehret G, Ledoux MJ (2001) The first preparation of silicon carbide nanotubes by shape memory synthesis and their catalytic potential. J Catal 200(2):400–410

    Article  CAS  Google Scholar 

  31. Wu I, Guo G (2007) Optical properties of SiC nanotubes: An ab initio study. Phys Rev B 76(3):035343

    Article  Google Scholar 

  32. Taguchi T, Igawa N, Yamamoto H, Jitsukawa S (2005) Synthesis of silicon carbide nanotubes. J Am Ceram Soc 88(2):459–461

    Article  CAS  Google Scholar 

  33. Zhang Y, Huang H (2008) Stability of single-wall silicon carbide nanotubes–molecular dynamics simulations. Comput Mater Sci 43(4):664–669

    Article  CAS  Google Scholar 

  34. Singh RS, Solanki A (2016) Modulation of electronic properties of silicon carbide nanotubes via sulphur-doping: an ab initio study. Phys Lett A 380(11–12):1201–1204

    Article  CAS  Google Scholar 

  35. Singh RS (2016) Hydrogen adsorption on sulphur-doped SiC nanotubes. Materials Research Express 3(7):075014

    Article  Google Scholar 

  36. Singh RS, Solanki A (2016) Hydrogen adsorption in metal-decorated silicon carbide nanotubes. Chem Phys Lett 660:155–159

    Article  CAS  Google Scholar 

  37. Zhao J-x, Ding Y-h (2009) Can silicon carbide nanotubes sense carbon dioxide? J Chem Theory Comput 5(4):1099–1105

    Article  CAS  PubMed  Google Scholar 

  38. Sun X-H, Li C-P, Wong W-K, Wong N-B, Lee C-S, Lee S-T et al (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124(48):14464–14471

    Article  CAS  PubMed  Google Scholar 

  39. Keller N, Pham-Huu C, Ehret G, Keller V, Ledoux MJ (2003) Synthesis and characterisation of medium surface area silicon carbide nanotubes. Carbon 41(11):2131–2139

    Article  CAS  Google Scholar 

  40. Han Z, Zhu H, Zou Y, Lu J, Zhu F, Ning Q (2022) Band gap regulation and a selective preparation method for single-walled silicon carbide nanotubes. Results in Physics 105658.

  41. Latu-Romain L, Ollivier M, Thiney V, Chaix-Pluchery O, Martin M (2013) Silicon carbide nanotubes growth: an original approach. J Phys D: Appl Phys 46(9):092001

    Article  CAS  Google Scholar 

  42. Vatankhah C, Badehian HA (2021) Electronic and optical properties of armchair silicon carbide nanotubes from first principles. Optik 237:166740

    Article  CAS  Google Scholar 

  43. Lin W-q, Li F, Chen G-h, Xiao S-t, Wang L-y, Wang Q (2020) A study on the adsorptions of SO2 on pristine and phosphorus-doped silicon carbide nanotubes as potential gas sensors. Ceram Int 46(16):25171–25188

    Article  CAS  Google Scholar 

  44. Mpourmpakis G, Froudakis GE, Lithoxoos GP, Samios J (2006) SiC nanotubes: a novel material for hydrogen storage. Nano Lett 6(8):1581–1583

    Article  CAS  PubMed  Google Scholar 

  45. Bagherinia MA, Shadman M (2014) Investigations of CO2, CH4 and N2 physisorption in single-walled silicon carbon nanotubes using GCMC simulation. International Nano Letters 4(1):1–10

    Article  Google Scholar 

  46. Mahdavifar Z, Abbasi N, Shakerzadeh E (2013) A comparative theoretical study of CO2 sensing using inorganic AlN, BN and SiC single walled nanotubes. Sens Actuators, B Chem 185:512–522

    Article  CAS  Google Scholar 

  47. De Boer J (1957) 50 endothermic chemisorption and catalysis. Advances in Catalysis. 9: Elsevier; 1957. p. 472–80

  48. Xu S, Irle S, Musaev D, Lin M-C (2006) Quantum chemical prediction of reaction pathways and rate constants for dissociative adsorption of CO x and NO x on the graphite (0001) surface. J Phys Chem B 110(42):21135–21144

    Article  CAS  PubMed  Google Scholar 

  49. Rezaei-Sameti M, Hemmati N (2016) N2O interaction with the pristine and 1Ca-and 2Ca-doped beryllium oxide nanotube: a computational study. Journal of Nanostructure in Chemistry 6(4):343–355

    Article  CAS  Google Scholar 

  50. Aghahosseini A, Edjlali L, Jamehbozorgi S, Rezvani M, Ghasemi E (2023) Theoretical investigations of functionalization of graphene and ZnO monolayers with mercaptopurine at aqueous media: A dispersion-corrected DFT calculations and molecular dynamic simulations. J Mol Liq 369:120865

    Article  CAS  Google Scholar 

  51. Tanreh S, Rezvani M, Ganji MD (2023) Molecular simulation investigations on interaction properties of the teriflunomide–chitosan complex in aqueous solution. J Phys Chem Solids 174:111171

    Article  CAS  Google Scholar 

  52. Ganji M (2008) Theoretical study of the adsorption of CO2 on tungsten carbide nanotubes. Phys Lett A 372(18):3277–3282

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The author acknowledges OP Jindal University, Raigarh and National Institute of Technology Kurukshetra, India to encourage and support for doing the research.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

Ram Sevak Singh conceptualized, used methodology and software, did formal analysis, and wrote the whole manuscript.

Corresponding author

Correspondence to Ram Sevak Singh.

Ethics declarations

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Competing Interests

The author declares that he has no known competing financial interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R.S. CO2 Capture by Metal-Decorated Silicon Carbide Nanotubes. Silicon 15, 4501–4511 (2023). https://doi.org/10.1007/s12633-023-02368-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02368-9

Keywords

Navigation