Skip to main content
Log in

H2S adsorption on pristine and metal-decorated (8, 0) SWCNT: a first principle study

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

Adsorption of hydrogen sulfide (H2S) on the surface of catalytic systems containing (8, 0) single-walled carbon nanotube decorated with Ni and Pd transition metals was investigated using plane-wave density functional theory. SWCNT was modified by adding Ni and Pd atoms to both inside and outside the nanotube and replacing carbon atoms with these metals. All structures were relaxed, and their structural and electronic properties were investigated before and after H2S adsorption and compared with pristine (8, 0) SWCNT properties. Obtained results showed that decorating CNTs with metals increases CNT efficiency for H2S adsorption. The most negative adsorption energies were observed when H2S was adsorbed on the surfaces of metal-decorated nanotube. Electronic properties like band structures and density of states indicated that systems containing Ni on SWCNT are more effective at adsorbing and sensing H2S molecules. Hydrogen sulfide adsorption also changed the magnetization of Ni-decorated structures. Moreover, adsorption of H2S from H side to Ni-decorated SWCNT leads to dissociation of H2S to HS and S atom. Obtained results showed that metal-decorated nanotubes are potentially good candidates for separating H2S from industrial waste gas streams and for its use in H2S sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

Data availability

All data, material, and codes used in this work are strictly following their terms and conditions for publication.

References

  1. Peng H, Cheng Y, Dai C, King AL, Predmore BL, Lefer DJ, Wang B (2011) A fluorescent probe for fast and quantitative detection of hydrogen sulfide in blood. Angew Chem Int Ed 50(41):9672–9675. https://doi.org/10.1002/anie.201104236

    Article  CAS  Google Scholar 

  2. Perna AF, Ingrosso D (2012) Low hydrogen sulphide and chronic kidney disease: a dangerous liaison. Nephrol Dial Transplant 27(2):486–493. https://doi.org/10.1093/ndt/gfr737

    Article  CAS  PubMed  Google Scholar 

  3. Szabo C (2011) Roles of hydrogen sulfide in the pathogenesis of diabetes mellitus and its complications. Antioxid Redox Signal 17(1):68–80. https://doi.org/10.1089/ars.2011.4451

    Article  CAS  Google Scholar 

  4. Wilcock DM, Griffin WST (2013) Down’s syndrome, neuroinflammation, and Alzheimer neuropathogenesis. J Neuroinflammation 10(1):864. https://doi.org/10.1186/1742-2094-10-84

    Article  CAS  Google Scholar 

  5. Bashkova S, Baker FS, Wu X, Armstrong TR, Schwartz V (2007) Activated carbon catalyst for selective oxidation of hydrogen sulphide: on the influence of pore structure, surface characteristics, and catalytically-active nitrogen. Carbon 45(6):1354–1363. https://doi.org/10.1016/j.carbon.2007.01.005

    Article  CAS  Google Scholar 

  6. Ganji MD, Danesh N (2013) Adsorption of H2S molecules by cucurbit[7]uril: an ab initio vdW-DF study. RSC Adv 3(44):22031–22038. https://doi.org/10.1039/C3RA41946K

    Article  CAS  Google Scholar 

  7. Ghosh TK, Tollefson EL (1986) A continuous process for recovery of sulfur from natural gas containing low concentrations of hydrogen sulfide. Can J Chem Eng 64(6):960–968. https://doi.org/10.1002/cjce.5450640612

    Article  CAS  Google Scholar 

  8. PiÉPlu A, Saur O, Lavalley J-C, Legendre O, Nédez C (1998) Claus catalysis and H2S selective oxidation. Catal Rev 40(4):409–450. https://doi.org/10.1080/01614949808007113

    Article  Google Scholar 

  9. Chen L, Huang J, Yang C-L (2001) Absorption of H2S in NaOCl caustic aqueous solution. Environ Prog 20:175–181. https://doi.org/10.1002/ep.670200313

    Article  CAS  Google Scholar 

  10. Cox HHJ, Deshusses MA (2002) Co-treatment of H2S and toluene in a biotrickling filter. Chem Eng J 87(1):101–110. https://doi.org/10.1016/S1385-8947(01)00222-4

    Article  CAS  Google Scholar 

  11. Abufager PN, Lustemberg PG, Crespos C, Busnengo HF (2008) DFT study of dissociative adsorption of hydrogen sulfide on Cu(111) and Au(111). Langmuir 24(24):14022–14026. https://doi.org/10.1021/la802874j

    Article  CAS  PubMed  Google Scholar 

  12. Spencer MJS, Todorova N, Yarovsky I (2008) H2S dissociation on the Fe(100) surface: an ab initio molecular dynamics study. Surf Sci 602(8):1547–1553. https://doi.org/10.1016/j.susc.2008.02.028

    Article  CAS  Google Scholar 

  13. ter Maat H, Hogendoorn JA, Versteeg GF (2005) The removal of hydrogen sulfide from gas streams using an aqueous metal sulfate absorbent: part I. The absorption of hydrogen sulfide in metal sulfate solutions. Sep Purif Technol 43(3):183–197. https://doi.org/10.1016/j.seppur.2004.10.013

    Article  CAS  Google Scholar 

  14. Ma X, Wang X, Song C (2009) “Molecular basket” sorbents for separation of CO2 and H2S from various gas streams. J Am Chem Soc 131(16):5777–5783. https://doi.org/10.1021/ja8074105

    Article  CAS  PubMed  Google Scholar 

  15. Faye O, Raj A, Mittal V, Beye AC (2016) H2S adsorption on graphene in the presence of sulfur: a density functional theory study. Comput Mater Sci 117:110–119. https://doi.org/10.1016/j.commatsci.2016.01.034

    Article  CAS  Google Scholar 

  16. Faye O, Eduok U, Szpunar J, Samoura A, Beye A (2018) H2S adsorption and dissociation on NH-decorated graphene: a first principles study. Surf Sci 668:100–106. https://doi.org/10.1016/j.susc.2017.10.016

    Article  CAS  Google Scholar 

  17. Shen F, Liu J, Zhang Z, Dong Y, Gu C (2018) Density functional study of hydrogen sulfide adsorption mechanism on activated carbon. Fuel Process Technol 171:258–264. https://doi.org/10.1016/j.fuproc.2017.11.026

    Article  CAS  Google Scholar 

  18. Zaporotskova IV, Boroznina NP, Parkhomenko YN, Kozhitov LV (2016) Carbon nanotubes: sensor properties. A review. Mod Electron Mater 2(4):95–105. https://doi.org/10.1016/j.moem.2017.02.002

    Article  Google Scholar 

  19. Zhao Q, Buongiorno Nardelli M, Lu W, Bernholc J (2005) Carbon nanotube−metal cluster composites: a new road to chemical sensors? Nano Lett 5(5):847–851. https://doi.org/10.1021/nl050167w

    Article  CAS  PubMed  Google Scholar 

  20. Chen YK, Liu LV, Tian WQ, Wang YA (2011) Theoretical studies of transition-metal-doped single-walled carbon nanotubes. J Phys Chem C 115(19):9306–9311. https://doi.org/10.1021/jp909490v

    Article  CAS  Google Scholar 

  21. Balram A, Santhanagopalan S, Hao B, Yap YK, Meng DD (2016) Electrophoretically-deposited metal-decorated CNT nanoforests with high thermal/electric conductivity and wettability tunable from hydrophilic to Superhydrophobic. Adv Funct Mater 26(15):2571–2579. https://doi.org/10.1002/adfm.201504208

    Article  CAS  Google Scholar 

  22. Zhang X, Cui H, Chen D, Dong X, Tang J (2018) Electronic structure and H2S adsorption property of Pt3 cluster decorated (8, 0) SWCNT. Appl Surf Sci 428:82–88. https://doi.org/10.1016/j.apsusc.2017.09.084

    Article  CAS  Google Scholar 

  23. Aghashiri A, Fotooh FK, Hashemian S (2019) Density functional calculations of nickel, palladium and cadmium adsorption onto (10,0) single-walled carbon nanotube. J Mol Model 25(7):185. https://doi.org/10.1007/s00894-019-4062-z

    Article  CAS  PubMed  Google Scholar 

  24. Kong H, Li H-Y, Lin G-D, Zhang H-B (2011) Pd-decorated CNT-promoted Pd-Ga2O3 catalyst for hydrogenation of CO2 to methanol. Catal Lett 141:886. https://doi.org/10.1007/s10562-011-0584-4

    Article  CAS  Google Scholar 

  25. Dhall S, Jaggi N, Nathawat R (2013) Functionalized multiwalled carbon nanotubes based hydrogen gas sensor. Sens Actuators A 201:321–327. https://doi.org/10.1016/j.sna.2013.07.018

    Article  CAS  Google Scholar 

  26. Liang X, Xie J, Liu Z (2015) A novel Pd-decorated carbon nanotubes-promoted Pd-ZnO catalyst for CO2 hydrogenation to methanol. Catal Lett 145(5):1138–1147. https://doi.org/10.1007/s10562-015-1505-8

    Article  CAS  Google Scholar 

  27. Zhou X, Tian WQ, Wang X-L (2010) Adsorption sensitivity of Pd-doped SWCNTs to small gas molecules. Sensors Actuators B Chem 151(1):56–64. https://doi.org/10.1016/j.snb.2010.09.054

    Article  CAS  Google Scholar 

  28. Singh AK, Kumar V, Briere TM, Kawazoe Y (2002) Cluster assembled metal encapsulated thin nanotubes of silicon. Nano Lett 2(11):1243–1248. https://doi.org/10.1021/nl025789l

    Article  CAS  Google Scholar 

  29. Kim H-S, Lee H, Han K-S, Kim J-H, Song M-S, Park M-S, Lee J-Y, Kang J-K (2005) Hydrogen storage in Ni nanoparticle-dispersed multiwalled carbon nanotubes. J Phys Chem B 109(18):8983–8986. https://doi.org/10.1021/jp044727b

    Article  CAS  PubMed  Google Scholar 

  30. Wang Q, Liu YJ, Zhao JX (2013) Theoretical study on the encapsulation of Pd3-based transition metal clusters inside boron nitride nanotubes. J Mol Model 19(3):1143–1151. https://doi.org/10.1007/s00894-012-1662-2

    Article  CAS  PubMed  Google Scholar 

  31. Jin L, Zhao X, Qian X, Dong M (2018) Nickel nanoparticles encapsulated in porous carbon and carbon nanotube hybrids from bimetallic metal-organic-frameworks for highly efficient adsorption of dyes. J Colloid Interface Sci 509:245–253. https://doi.org/10.1016/j.jcis.2017.09.002

    Article  CAS  PubMed  Google Scholar 

  32. Kalantari Fotooh F, Askari Baghemiyani T (2019) Theoretical study of interaction between methanol and metal encapsulated single walled carbon nanotubes. J Inorg Organomet Polym Mater 29(2):465–476. https://doi.org/10.1007/s10904-018-1018-1

    Article  CAS  Google Scholar 

  33. Oftadeh M, Gholamian M, Abdallah HH (2013) Investigation of interaction hydrogen sulfide with (5,0) and (5,5) single-wall carbon nanotubes by density functional theory method. Int Nano Lett 3(1):7. https://doi.org/10.1186/2228-5326-3-7

    Article  CAS  Google Scholar 

  34. Srivastava R, Suman H, Shrivastava S, Srivastava A (2019) DFT analysis of pristine and functionalized zigzag CNT: a case of H2S sensing. Chem Phys Lett 731:136575. https://doi.org/10.1016/j.cplett.2019.07.003

    Article  CAS  Google Scholar 

  35. Paolo G, Stefano B, Nicola B, Matteo C, Roberto C, Carlo C, Davide C, Guido LC, Matteo C, Ismaila D, Andrea Dal C, de Stefano G, Stefano F, Guido F, Ralph G, Uwe G, Christos G, Anton K, Michele L, Layla M-S, Nicola M, Francesco M, Riccardo M, Stefano P, Alfredo P, Lorenzo P, Carlo S, Sandro S, Gabriele S, Ari PS, Alexander S, Paolo U, Renata MW (2009) QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials. J Phys Condens Matter 21(39):395502

    Article  Google Scholar 

  36. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868. https://doi.org/10.1103/PhysRevLett.77.3865

    Article  CAS  PubMed  Google Scholar 

  37. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895. https://doi.org/10.1103/PhysRevB.41.7892

    Article  CAS  Google Scholar 

  38. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13(12):5188–5192. https://doi.org/10.1103/PhysRevB.13.5188

    Article  Google Scholar 

  39. Rahman MM, Balkhoyor HB, Asiri AM, Sobahi TR (2016) Development of selective chloroform sensor with transition metal oxide nanoparticle/multi-walled carbon nanotube nanocomposites by modified glassy carbon electrode. J Taiwan Inst Chem Eng 66:336–346. https://doi.org/10.1016/j.jtice.2016.06.004

    Article  CAS  Google Scholar 

  40. Durgun E, Dag S, Ciraci S, Gülseren O (2004) Energetics and electronic structures of individual atoms adsorbed on carbon nanotubes. J Phys Chem B 108(2):575–582. https://doi.org/10.1021/jp0358578

    Article  CAS  Google Scholar 

  41. Nguyen TTH, Le VK, Le Minh C, Nguyen NH (2017) A theoretical study of carbon dioxide adsorption and activation on metal-doped (Fe, co, Ni) carbon nanotube. Comput Theor Chem 1100:46–51. https://doi.org/10.1016/j.comptc.2016.12.006

    Article  CAS  Google Scholar 

  42. Ling L, Zhang R, Han P, Wang B (2013) DFT study on the sulfurization mechanism during the desulfurization of H2S on the ZnO desulfurizer. Fuel Process Technol 106:222–230. https://doi.org/10.1016/j.fuproc.2012.08.001

    Article  CAS  Google Scholar 

Download references

Code availability

N/A

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed collectively for the completion of the work.

Corresponding author

Correspondence to Forough Kalantari Fotooh.

Ethics declarations

Ethics approval

This work follows all the ethics for publication.

Consent to participate

N/A

Consent for publication

N/A

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shiri, F., Kalantari Fotooh, F., Mosslemin, M.H. et al. H2S adsorption on pristine and metal-decorated (8, 0) SWCNT: a first principle study. J Mol Model 27, 143 (2021). https://doi.org/10.1007/s00894-021-04761-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-021-04761-w

Keywords

Navigation