Skip to main content

Advertisement

Log in

Silicon (Si) Application Improved the Antioxidant Response and Grain Yield Formation in rice Under High Temperature Conditions

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

A Correction to this article was published on 14 March 2023

This article has been updated

Abstract

Purpose

The present study was conducted to investigate the silicon (Si) induced modulations in the antioxidant response and yield formation of rice under high temperature conditions.

Methods

Four rice genotypes i.e., wild-type flower 11 (WT), nitrate reductase gene interference material (NR-RNAi), nitric oxide synthase interference material (NO-RNAi), and nitric oxide synthase overexpression material (NO-OR) were applied with two Si fertilizer treatments i.e., Si0: 0 g/pot and Si12: 12 g/pot. All genotypes were grown in early season (April to July) with mean maximum temperature ranged from 29.32℃ to 36.13 ℃ (higher than critical temperature range).

Results

Compared with Si0, the Si12 increased the grain number per panicle, effective panicle number, and seed setting rate as well as rice yield of all rice genotypes under high temperature conditions. The yields of NR- RNAi and NO-OR was increased by 95.11% and 103.40%, respectively in Si12 than Si0. Moreover, Si application also improved the dry biomass of all rice genotypes whereas the stem and leaf weight of WT and leaf weight of NO-OR was increased by 36.70%, 166.67% and 36.63%, respectively, in Si12 as compared with Si0. In addition, the Si12 increased the catalase (CAT) activity and decreased the malondialdehyde (MDA) contents, which markedly reflected in NO-RNAi CAT activity (67.10%) at heading stage and NO-RNAi MDA content (53.61%) at maturity stage.

Conclusions

Overall, Si application tend to increase the rice yield, improved dry matter accumulation and enhanced the stress tolerance of rice under high temperature conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The data sets supporting the results of this article are included within the article.

Code Availability

No code.

Change history

References

  1. Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6. https://doi.org/10.1007/s11103-005-2159-5

    Article  CAS  PubMed  Google Scholar 

  2. Ashraf U, Hussain S, Akbar N, Anjum SA, Hassan W, Tang X (2018) Water management regimes alter Pb uptake and translocation in fragrant rice. Ecotoxicol Environ Saf 149:128–134. https://doi.org/10.1016/j.ecoenv.2017.11.033

    Article  CAS  PubMed  Google Scholar 

  3. Battisti DS, Naylor RL (2009) Historical warnings of future food insecurity with unprecedented seasonal heat. Science 3232:40–244. https://doi.org/10.1126/science.1164363

    Article  CAS  Google Scholar 

  4. Karwa S, Bahuguna RN, Chaturvedi AK, Maurya S, Arya SS, Chinnusamy V, Pal M (2020) Phenotyping and characterization of heat stress tolerance at reproductive stage in rice (Oryza sativa L.). Acta Physiologiae Plantarum 42(2):29. https://doi.org/10.1007/s11738-020-3016-5

    Article  Google Scholar 

  5. Peng S, Huang J, Sheehy JE, Laza RC, Visperas RM, Zhong X, Centeno GS, Khush GS, Cassman KG (2004) Rice yields decline with higher night temperature from global warming. Proc Natl Acad Sci 101(27):9971–9975. https://doi.org/10.1073/pnas.0403720101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Jiang N, Yu P, Fu W, Li G, Feng B, Chen T, Li H, Tao L, Fu G (2020) Acid invertase confers heat tolerance in rice plants by maintaining energy homoeostasis of spikelets. Plant Cell Environ 43:1273–1287. https://doi.org/10.1111/pce.13733

    Article  CAS  PubMed  Google Scholar 

  7. Kong L, Ashraf U, Cheng S, Rao G, Mo Z, Tian H, Pan S, Tang X (2017) Short-term water management at early filling stage improves early-season rice performance under high temperature stress in South China. Eur J Agron 90:117–126. https://doi.org/10.1016/j.eja.2017.07.006

    Article  Google Scholar 

  8. Cao YY, Chen YH, Chen MX, Wang ZQ, Wu CF, Bian XC, Yang JC, Zhang JH (2016) Growth characteristics and endosperm structure of superior and inferior spikelets of indica rice under high-temperature stress. Biol Plant 60(3):532–542. https://doi.org/10.1007/s10535-016-0606-6

    Article  CAS  Google Scholar 

  9. Huang L, Sun Y, Peng S, Wang F (2016) Genotypic differences of japonica rice responding to high temperature in China. Agron J 108(2):626–636. https://doi.org/10.2134/agronj2015.0507

    Article  CAS  Google Scholar 

  10. Feng BH, Zhang CX, Chen TT, Zhang XF, Tao LX, Fu GF (2018) Salicylic acid reverses pollen abortion of rice caused by heat stress. BMC Plant Biol 18(1):245. https://doi.org/10.1186/s12870-018-1472-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Thussagunpanit J, Jutamanee K, Kaveeta L, Chai-arree W, Pankean P, Homvisasevongsa S, Suksamrarn A (2015) Comparative effects of brassinosteroid and brassinosteroid mimic on improving photosynthesis, lipid peroxidation, and rice seed set under heat stress. J Plant Growth Regul 34(2):320–331. https://doi.org/10.1007/s00344-014-9467-4

    Article  CAS  Google Scholar 

  12. Fu GF, Zhang CX, Yang YJ, Xiong J, Yang XQ, Zhang XF, Jin QY, Tao LX (2015) Male parent plays more important role in heat tolerance in three-line hybrid rice. Rice Sci 22(3):116–122. https://doi.org/10.1016/j.rsci.2015.05.015

    Article  Google Scholar 

  13. Zhang CX, Li GY, Chen TT, Feng BH, Fu WM, Yan JX, Islam MR, Jin QY, Tao LX, Fu GF (2018) Heat stress induces spikelet sterility in rice at ⒀anthesis through inhibition of pollen tube elongation interfering with auxin homeostasis in pollinated pistils. Rice 11(1):14. https://doi.org/10.1186/s12284-018-0206-5

    Article  PubMed  PubMed Central  Google Scholar 

  14. Ishimaru T, Hlaing KT, Oo YM, Lwin TM, Sasaki PD, Simon EM, Myint TT, Hairmansis A, Susanto U, Ayyenar B, Muthurajan R, Hirabayashi H, Fukuta Y, Kobayasi K, Matsui T, Yoshimoto M, Htun TM (2022) An early-morning flowering trait in rice can enhance grain yield under heat stress field conditions at flowering stage. Field Crops Research 277:108400. https://doi.org/10.1016/j.fcr.2021.108400

    Article  Google Scholar 

  15. Lan Q (2018) Effect of silicon on soil nutrient availability and nutrient uptake in rice under cold stress (Master's dissertation, Northeast Agricultural University). https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201901&filename=1018112638.nh

  16. Li XC (2020) Effect of silicon preparation on the physiological characteristics of cold japonica rice under cold stress (Master's dissertation, Northeast Agricultural University). https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD202101&filename=1020082418.nh

  17. He QL (2017) Effect of potassium and silicon preparation on the high temperature resistance and lodging resistance of rice during the heading and flowering period (master's thesis, Sichuan Agricultural University). https://kns.cnki.net/KCMS/detail/detail.aspx?dbname=CMFD201901&filename=1018025417.nh

  18. Saha G, Mostofa MG, Rahman MM, Tran LP (2021) Silicon-mediated heat tolerance in higher plants: A mechanistic outlook. Plant Physiol Biochem 166:341–347. https://doi.org/10.1016/j.plaphy.2021.05.051

    Article  CAS  PubMed  Google Scholar 

  19. Zheng ZH, Lou YS, Zuo HT, Shi YF, Wang Y (2018) Effect of applying application on rice growth and yield under nighttime warming conditions. China Agric Meteorol 06:390–397

    Google Scholar 

  20. Wu CY, Yao YM, Shao P, Wang Y, Wang ZW, Tian XH (2014) Exogenous silicon alleviates high temperature-induced reduction in seed setting of hybrid rice. Chinese J Rice Sci 28(1):71–77 (in Chinese with English Abstract). https://doi.org/10.3969/j.issn.1001-7216.2014.01.010

  21. Datnoff LE, Deren CW, Snyder GH (1997) Silicon fertilization for disease management of rice in Florida. Crop Prot 16(6):525–531. https://doi.org/10.1016/S0261-2194(97)00033-1

    Article  CAS  Google Scholar 

  22. Su SM, Yang CL, Rao XF, Li XK (2022) Progress on the effects of silicon on plant stress resistance. J Huazhong Agric Univ (06):160–168. https://doi.org/10.13300/j.cnki.hnlkxb.2022.06.018

  23. Sun Q (2022) Effect of silicon on rice growth and development. Agric Technol (19):46–49. https://doi.org/10.19754/j.nyyjs.20221015012

  24. Etesami H, Jeong BR (2018) Silicon (Si): Review and future prospects on the action mechanisms in alleviating biotic and abiotic stresses in plants. Ecotoxicol Environ Saf 147:881–896. https://doi.org/10.1016/j.ecoenv.2017.09.063

    Article  CAS  PubMed  Google Scholar 

  25. Włodarczyk T, Balakhnina T, Matichenkov V, Brzezińska M, Nosalewicz M, Szarlip P, Fomina I (2019) Effect of silicon on barley growth and N2O emission under flooding. Sci Total Environ 685:1–9. https://doi.org/10.1016/j.scitotenv.2019.05.410

    Article  CAS  PubMed  Google Scholar 

  26. Mostofa MG, Yoshida N, Fujita M (2014) Spermidine pretreatment enhances heat tolerance in rice seedlings through modulating antioxidative and glyoxalase systems. Plant Growth Regul 73(1):31–44. https://doi.org/10.1007/s10725-013-9865-9

    Article  CAS  Google Scholar 

  27. Zhu Y, Gong H (2014) Beneficial effects of silicon on salt and drought tolerance in plants. Agron Sustain Dev 34(2):455–472. https://doi.org/10.1007/s13593-013-0194-1

    Article  CAS  Google Scholar 

  28. Gaur S, Kumar J, Prasad SM, Sharma S, Bhat JA, Sahi S, Singh VP, Tripathi DK, Chauhan DK (2021) Silicon and nitric oxide interplay alleviates copper induced toxicity in mung bean seedlings. Plant Physiol Biochem 167:713–722. https://doi.org/10.1016/j.plaphy.2021.08.011

    Article  CAS  PubMed  Google Scholar 

  29. Kaya C, Akram NA, Ashraf M, Alyemeni MN, Ahmad P (2020) Exogenously supplied silicon (Si) improves cadmium tolerance in pepper (Capsicum annuum L.) by up-regulating the synthesis of nitric oxide and hydrogen sulfide. J Biotechnol 316:35–45. https://doi.org/10.1016/j.jbiotec.2020.04.008

    Article  CAS  PubMed  Google Scholar 

  30. Singh S, Prasad SM, Sharma S, Dubey NK, Ramawat N, Prasad R, Singh VP, Tripathi DK, Chauhan DK (2020) Silicon and nitric oxide-mediated mechanisms of cadmium toxicity alleviation in wheat seedlings. Physiol Plantarum. https://doi.org/10.1111/ppl.13065

  31. Vishwakarma K, Singh VP, Prasad SM, Chauhan DK, Tripathi DK, Sharma S (2020) Silicon and plant growth promoting rhizobacteria differentially regulate AgNP-induced toxicity in Brassica juncea: Implication of nitric oxide. J Hazard Mater 390:121806. https://doi.org/10.1016/j.jhazmat.2019.121806

    Article  CAS  PubMed  Google Scholar 

  32. Kolbert Z, Ordog A (2021) Involvement of nitric oxide (NO) in plant responses to metalloids. J Hazard Mater 420:126606. https://doi.org/10.1016/j.jhazmat.2021.126606

    Article  CAS  PubMed  Google Scholar 

  33. Bhat JA, Ahmad P, Corpas FJ (2021) Main nitric oxide (NO) hallmarks to relieve arsenic stress in higher plants. J Hazard Mater 406:124289. https://doi.org/10.1016/j.jhazmat.2020.124289

    Article  CAS  PubMed  Google Scholar 

  34. Yamasaki H, Sakihama Y (2000) Simultaneous production of nitric oxide and peroxynitrite by plant nitrate reductase: in vitro evidence for the NR-dependent formation of active nitrogen species. FEBS Lett 468(1):89–92. https://doi.org/10.1016/S0014-5793(00)01203-5

    Article  CAS  PubMed  Google Scholar 

  35. Wendehenne D (2021) Nitric oxide synthase in plants — A follow-up of ABR volume 77: Nitric oxide and signaling in plants. Adv Bot Res 100:379–395. https://doi.org/10.1016/bs.abr.2021.01.011

    Article  CAS  Google Scholar 

  36. Huang ZL, Xie WJ, Wang M, Liu XW, Ashraf U, Qin DJ, Zhuang MS, Li W, Li YZ, Wang SL, Tian H, Mo ZW (2020) Response of rice genotypes with differential nitrate reductase-dependent NO synthesis to melatonin under ZnO nanoparticles’ (NPs) stress. Chemosphere (Oxford) 250:126337. https://doi.org/10.1016/j.chemosphere.2020.126337

    Article  CAS  Google Scholar 

  37. Kaya C, Ashraf M, Alyemeni MN, Ahmad P (2020) Nitrate reductase rather than nitric oxide synthase activity is involved in 24-epibrassinolide-induced nitric oxide synthesis to improve tolerance to iron deficiency in strawberry (Fragaria × annassa) by up-regulating the ascorbate-glutathione cycle. Plant Physiol Biochem 151:486–499. https://doi.org/10.1016/j.plaphy.2020.04.002

    Article  CAS  PubMed  Google Scholar 

  38. Ma CC, Li QF, Shu LZ, Zhang JZ (2002) Preliminary study on the mechanism of silicon on maize seed germination and seedling growth. Acta Agron Sin 5:665–669 (in Chinese with English Abstract). https://doi.org/10.3321/j.issn:0496-3490.2002.05.016

  39. Corpas FJ, Palma JM, Del Rio LA, Barroso JB (2009) Evidence supporting the existence of L-arginine-dependent nitric oxide synthase activity in plants. New Phytol 184(1):9–14. https://doi.org/10.1111/j.1469-8137.2009.02989.x

    Article  CAS  PubMed  Google Scholar 

  40. Foresi N, Correa-Aragunde N, Parisi G, Caló G, Salerno G, Lamattina L (2010) Charaterization of a nitric oxide synthase from the plant kingdom: NO generation from the Green AlgaOstreococcus tauri is light irradiance and growth phase dependent. Plant Cell 22(11):3816–3830. https://doi.org/10.2307/41059392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Weisslocker-Schaetzel M, Andre F, Touazi N, Foresi N, Lembrouk M, Dorlet P, Frelet-Barrand A, Lamattina L, Santolini J (2017) The NOS-like protein from the microalgae Ostreococcus tauri is a genuine and ultrafast NO-producing enzyme. Plant Sci 265:100–111. https://doi.org/10.1016/j.plantsci.2017.09.019

    Article  CAS  PubMed  Google Scholar 

  42. Tripathi DK, Rai P, Guerriero G, Sharma S, Corpas FJ, Singh VP (2021) Silicon induces adventitious root formation in rice under arsenate stress with involvement of nitric oxide and indole-3-acetic acid. J Exp Bot 72(12):4457–4471. https://doi.org/10.1093/jxb/eraa488

    Article  CAS  PubMed  Google Scholar 

  43. Li Y, Liang L, Li W, Ashraf U, Ma L, Tang X, Pan S, Tian H, Mo Z (2021) ZnO nanoparticle-based seed priming modulates early growth and enhances physio-biochemical and metabolic profiles of fragrant rice against cadmium toxicity. J Nanobiotechnol 19:75. https://doi.org/10.1186/s12951-021-00820-9

    Article  CAS  Google Scholar 

  44. Zou Q (2003) Plant physiology experiment guidance. China Agriculture Press, Beijing, pp 173–174

    Google Scholar 

  45. Zhang ZL, Qu WJ (1980) Plant physiology experiment guide, 3rd edn. Higher Education Press, Beijing, pp 274–277

    Google Scholar 

  46. Hao JJ, Kang ZL, Yu Y (2007) Plant physiology experiment technology. Chemical Industry Press, Beijing, pp 159–160

    Google Scholar 

  47. Ali F, Waters DLE, Ovenden B, Bundock P, Raymond CA, Rose TJ (2019) Heat stress during grain fill reduces head rice yield through genotype dependant increased husk biomass and grain breakage. J Cereal Sci 90:102820. https://doi.org/10.1016/j.jcs.2019.102820

    Article  Google Scholar 

  48. Xiaohui S (2021) Research on silicon fertilizer at home and abroad. China New Technol New Products (23):143–145. https://doi.org/10.13612/j.cnki.cntp.2021.23.045

  49. Luo LY, Wu XF, Liu KL, Luo LH, Long WX, Luo LY, Xu WB, Li YH. Effect of silicon fertilizer on yield, quality and lodging resistance of high-quality rice. Hybrid Rice. https://doi.org/10.16267/j.cnki.1005-3956.20220810.316

  50. Zhao C, Liu B, Piao S, Wang X, Lobell DB, Huang Y, Huang MT, Yao YT, Bassu S, Ciais P, Durand J, Elliott J, Ewert F, Janssens IA, Li T, Lin E, Liu Q, Martre P, Müller C, Peng SS, Peñuelas J, Ruane AC, Wallach D, Wang T, Wu DH, Liu Z, Zhu Y, Zhu ZC, Asseng S (2017) Temperature increase reduces global yields of major crops in four independent estimates. Proc Natl Acad Sci 114(35):9326–9331. https://doi.org/10.1073/pnas.1701762114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Mo ZW, Pan SG, Ashraf U, Kanu AS, Li W, Wang ZM, Duan MY, Tian H, Kargbo MB, Tang XR (2017) Local climate affects growth and grain productivity of precision hill-direct-seeded rice in South China. Appl Ecol Environ Res 15(1):113–25. https://doi.org/10.15666/aeer/1501_113125

    Article  Google Scholar 

  52. Liu QH, Ma H, Sun ZW, Lin XQ, Zhou XB (2019) Translocation efficiencies and allocation of nitrogen, phosphorous and potassium in rice as affected by silicon fertilizer under high daytime temperature. J Agro Crop Sci 205(2):188–201

    Article  CAS  Google Scholar 

  53. Meharg C, Meharg AA (2015) Silicon, the silver bullet for mitigating biotic and abiotic stress, and improving grain quality, in rice? Environ Exp Bot 120:8–17. https://doi.org/10.1016/j.envexpbot.2015.07.001

    Article  CAS  Google Scholar 

  54. Detmann KC, Araujo WL, Martins SCV, Sanglard LMVP, Reis JV, Detmann E, Rodrigues FA, Nunes-Nesi A, Fernie AR, DaMatta FM (2012) Silicon nutrition increases grain yield, which, in turn, exerts a feed-forward stimulation of photosynthetic rates via enhanced mesophyll conductance and alters primary metabolism in rice. New Phytol 196(3):752–762. https://doi.org/10.1111/j.1469-8137.2012.04299.x

    Article  CAS  PubMed  Google Scholar 

  55. Cuong TX, Ullah H, Datta A, Hanh TC (2017) Effects of silicon-based fertilizer on growth, yield and nutrient uptake of rice in tropical zone of Vietnam. Rice Sci 24(5):283–290. https://doi.org/10.1016/j.rsci.2017.06.002

    Article  Google Scholar 

  56. Mo ZW, Lei S, Ashraf U, Khan I, Li Y, Pan SG, Duan MY, Tian H, Tang XR (2017) Silicon fertilization modulates 2-acetyl-1-pyrroline content, yield formation and grain quality of aromatic rice. J Cereal Sci 75:17–24. https://doi.org/10.1016/j.jcs.2017.03.014

    Article  CAS  Google Scholar 

  57. Dorairaj D, Ismail MR, Sinniah UR, Ban TK (2017) Influence of silicon on growth, yield and lodging resistance of Mr219, a lowland rice of Malaysia. J Plant Nutr 40(8):1111–1124. https://doi.org/10.1080/01904167.2016.1264420

    Article  CAS  Google Scholar 

  58. Tamai K, Ma JF (2008) Reexamination of silicon effects on rice growth and production under field conditions using a low silicon mutant. Plant Soil 307(1–2):21–27. https://doi.org/10.1007/s11104-008-9571-y

    Article  CAS  Google Scholar 

  59. Deren CW, Datnoff LE, Snyder GH, Martin FG (1994) Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic histosols [J]. Crop Sci 3(34):733–737. https://doi.org/10.2135/cropsci1994.0011183X0034000

    Article  Google Scholar 

  60. Lavinsky AO, Detmann KC, Reis JV, Ávila RT, Sanglard ML, Pereira LF, Sanglard LMVP, Rodrigues FA, Araújo WL, DaMatta FM (2016) Silicon improves rice grain yield and photosynthesis specifically when supplied during the reproductive growth stage. J Plant Physiol 206:125–132. https://doi.org/10.1016/j.jplph.2016.09.010

    Article  CAS  PubMed  Google Scholar 

  61. Hoseinian Y, Bahmanyar MA, Sadegh-Zade F, Mostafa E, Pourya B (2020) Effects of different sources of silicon and irrigation regime on rice yield components and silicon dynamics in the plant and soil. J Plant Nutr 43(15):2322–2335. https://doi.org/10.1080/01904167.2020.1771577

    Article  CAS  Google Scholar 

  62. Lü GH, Wu YF, Bai WB, Ma B, Wang CY, Song JQ (2013) Influence of high temperature stress on net photosynthesis, dry matter partitioning and rice grain yield at flowering and grain filling stages. J Integr Agric 12(4):603–609. https://doi.org/10.1016/S2095-3119(13)60278-6

    Article  Google Scholar 

  63. Guo H, Tu NM, Ma GZ, Fang CY, Chen W, Yang NJ, Yu ZY, Jiang XH, Zou Y, Liu FX, Yi ZX (2022) Effect of silicon fertilizer on growth and yield of double-season rice. Crop Res (06):549–554. https://doi.org/10.16848/j.cnki.issn.1001-5280.2021.06.01

  64. Wei HH, Meng TY, Li C, Zhang HC, Shi TY, Ma RR, Wang XY, Yang YW, Dai QG, Huo ZY, Xu K, Wei HY, Guo BW (2016) Effects of silicon application rate on yield and related morphological and physiological traits of Yongyou series indica-japonica super rice. Acta Agron Sin 42(03):437–445 (in Chinese with English Abstract). https://doi.org/10.3724/SP.J.1006.2016.00437

  65. Berahim Z, Omar MH, Zakaria N, Ismail MR, Rosle R, Roslin NA, Che’Ya NN (2021) Silicon improves yield performance by enhancement in physiological responses, crop imagery, and leaf and culm sheath morphology in new rice line, PadiU Putra. BioMed Res Int 2021:1–17. https://doi.org/10.1155/2021/6679787

    Article  CAS  Google Scholar 

  66. Shah F, Huang J, Cui K, Nie L, Shah T, Cheh C, Wang K (2011) Impact of high-temperature stress on rice plant and its traits related to tolerance. J Agric Sci 149(5):545–556. https://doi.org/10.1017/S0021859611000360

    Article  CAS  Google Scholar 

  67. Mostofa MG, Rahman MM, Ansary MMU, Keya SS, Abdelrahman M, Miah MG, Tran LP (2021) Silicon in mitigation of abiotic stress-induced oxidative damage in plants. Crit Rev Biotechnol 41(6):918–934. https://doi.org/10.1080/07388551.2021.1892582

    Article  CAS  PubMed  Google Scholar 

  68. Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22(23):18318–18332. https://doi.org/10.1007/s11356-015-5463-x

    Article  CAS  Google Scholar 

  69. Ashraf U, Kanu AS, Deng Q, Mo Z, Pan S, Tian H, Tang X (2017) Lead (Pb) toxicity; physio-biochemical mechanisms, grain yield, quality, and Pb distribution proportions in scented rice. Front Plant Sci 28(8):259. https://doi.org/10.3389/fpls.2017.00259

    Article  Google Scholar 

  70. Ashraf U, Hussain S, Anjum SA, Abbas F, Tanveer M, Noor MA, Tang X (2017) Alterations in growth, oxidative damage, and metal uptake of five aromatic rice cultivars under lead toxicity. Plant Physiol Biochem 115:461–471. https://doi.org/10.1016/j.plaphy.2017.04.019

    Article  CAS  PubMed  Google Scholar 

  71. Ashraf U, Mo Z, Tang X (2018) Direct-seeded versus transplanted rice in Asia: climatic effects, relative performance, and constraints—a comparative outlook. In: Agronomic rice practices and postharvest processing. Apple Academic Press, pp 51–100

  72. Domiciano GP, Cacique IS, Freitas CC, Filippi MCC, DaMatta FM, Do Vale FXR, Rodrigues FA (2015) Alterations in gas exchange and oxidative metabolism in rice leaves infected by pyricularia oryzae are attenuated by silicon. Phytopathology® 105(6):738–747. https://doi.org/10.1094/PHYTO-10-14-0280-R

    Article  CAS  PubMed  Google Scholar 

  73. Kim Y, Khan AL, Waqas M, Lee I (2017) Silicon regulates antioxidant activities of crop plants under abiotic-induced oxidative stress: a review. Front Plant Sci 8:510. https://doi.org/10.3389/fpls.2017.00510

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rahman MTGU, Kawamura K, Koyama H, Hara T (1998) Varietal differences in the growth of rice plants in response to aluminum and silicon. Soil Sci Plant Nutr 44(3):423–431. https://doi.org/10.1080/00380768.1998.10414464

    Article  CAS  Google Scholar 

  75. Dufey I, Gheysens S, Ingabire A, Lutts S, Bertin P (2014) Silicon Application in Cultivated Rices (Oryza sativa L and Oryza glaberrima Steud) Alleviates iron toxicity symptoms through the reduction in iron concentration in the leaf tissue. J Agron Crop Sci 200(2):132–142. https://doi.org/10.1111/jac.12046

    Article  CAS  Google Scholar 

  76. Zeng RJ (2021) Effect of silicon fertilizer on rice yield, quality and lodging resistance characteristics. Bull Chin Agric 22:1–4

    Google Scholar 

  77. Liu X, Huang Z, Li Y, Xie W, Li W, Tang X, Ashraf U, Kong L, Wu L, Wang S, Mo Z (2020) Selenium-silicon (Se-Si) induced modulations in physio-biochemical responses, grain yield, quality, aroma formation and lodging in fragrant rice. Ecotoxicol Environ Saf 196:110525. https://doi.org/10.1111/jac.12313

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was supported by Guangdong Provincial R & D Project in Key Areas (2019b020221003), National Natural Science Foundation of China (31971843), Modern Agricultural Industrial Technology System of Guangdong Province (2020KJ105).

Author information

Authors and Affiliations

Authors

Contributions

Zhaowen Mo designed and supervised the experiments, Long Zhang performed the traits investigation, Huizi Deng, Xinyi Wang, Umair Ashraf, and Siying Deng analyzed the data and wrote the manuscript. Hua Tian, Muhammad Imran, and Xiangru Tang revised and edited the manuscript. All of the authors approved the final version of the manuscript.

Corresponding authors

Correspondence to Xiangru Tang or Zhaowen Mo.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no conflict of interest.

Competing of Interest

The authors have no relevant financial or nonfinancial interests to disclose.

Informed Consent

The Publication is approved by all authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, H., Wang, X., Deng, S. et al. Silicon (Si) Application Improved the Antioxidant Response and Grain Yield Formation in rice Under High Temperature Conditions. Silicon 15, 4375–4385 (2023). https://doi.org/10.1007/s12633-023-02354-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-023-02354-1

Keywords

Navigation