Skip to main content
Log in

Investigation of SiO and FO Oxidation Mechanisms by Carbon and Boron Nitride as Acceptable Nano-catalysts

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The oxidation of SiO and FO by LH, ER, NER and TER mechanisms on metal doped nanotubes is investigated in order to find the catalytic abilities of metal doped nanotubes. The SiO and FO molecules are joined on metal doped nanotube-O2* and metal doped nanotube-O* and calculated barrier energies are lower than metal based catalysts. Results shown that Fe and V doped BNNT have higher potential than metal doped CNT to adsorb the O2, SiO2 and FO2. The metal doped nanotube-OSiOO* and metal doped nanotube-OFOO* intermediates in ER are permanent than corresponding intermediate. Result shown that in NER mechanism the OOSiSiOO* and OOFFOO* formation is rate limiting step and the creation of surface-OSiOOSiO* and surface-OFOOFO* is the rate-limiting steps of TER mechanisms. The metal doped nanotubes (V-BNNT, V-CNT, Fe-BNNT and Fe-CNT) can catalyze the processes of SiO and FO oxidation by LH, ER, NER and TER mechanisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Zhang Q, Tang C (2018) J Phys Chem C 122:22838–22848

    Article  CAS  Google Scholar 

  2. Zhang Q, Tang C, Ling Fu (2019) Appl Surf Sci 497:143723

    Article  CAS  Google Scholar 

  3. Wang Y, Zhang K, Yang Z (2019) Chem Phys Lett 734:136733

    Article  CAS  Google Scholar 

  4. Guo G-C, Wang R-Z, Zhang M (2019) Appl Sur Sci 475:102–108

    Article  CAS  Google Scholar 

  5. Petnikota S (2019) ChemElectroChem 6:493–503

    Article  CAS  Google Scholar 

  6. Ravaei I, Haghighat M, Azami SM (2019) Appl Sur Sci 469:103–112

    Article  CAS  Google Scholar 

  7. Oku T, Kuno M (2001) Kitahara. Int J Inorg Mater 3:597–612

    Article  CAS  Google Scholar 

  8. Oku T, Nishiwaki A, Narita I (2004) Sci Technol Adv Mater 5:635–638

    Article  CAS  Google Scholar 

  9. Esrafili MD, Nurazar R (2014) Surf Sci 626:44–48

    Article  CAS  Google Scholar 

  10. Munsif S, Ayub K (2018) J Mol Liq 259:249–259

    Article  CAS  Google Scholar 

  11. Tsierkezos NG, Ritter U (2015) Chem Phys Lett 639:217–224

    Article  CAS  Google Scholar 

  12. Tsierkezos NG, Szroeder P (2015) J Solid State Electrochem 19:891–905

    Article  CAS  Google Scholar 

  13. Altalhi T, Mezni A (2016) Chem Phys Lett 658:92–96

    Article  CAS  Google Scholar 

  14. Chen M, Shao L-L (2016) Chem Eng J 304:303–312

    Article  CAS  Google Scholar 

  15. Srivastava D, Susi T (2014) RSC Adv 4:15225–15235

    Article  CAS  Google Scholar 

  16. George V, Papamokos J (2004) Phys Chem A 108:7291–7300

    Article  Google Scholar 

  17. Allam O, Cho BW (2018) RSC Adv 8:39414–39420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Valadbeigi Y (2016) Comput Theor Chem 1091:169–175

    Article  CAS  Google Scholar 

  19. Stenlid JH (2017) J Phys Chem C 121:27483–27492

    Article  CAS  Google Scholar 

  20. Tavakol H, Shahabi D (2015) J Phys Chem C 119:6502–6510

    Article  CAS  Google Scholar 

  21. Smith DGA, Patkowski K (2015) J Phys Chem C 119:4934–4948

    Article  CAS  Google Scholar 

  22. Smith DGA, Patkowski K (2014) J Phys Chem C 118:544–550

    Article  CAS  Google Scholar 

  23. Zhao J-Y (2013) J Phys Chem A 117:12519–12528

    Article  CAS  PubMed  Google Scholar 

  24. Cunha R, Elías AL (2018) Carbon 127:312–319

    Article  CAS  Google Scholar 

  25. Kravchyk KV (2020) ACS Energy Lett 5:545–549

    Article  CAS  Google Scholar 

  26. Kumar S, Bhauriyal P (2019) J Phys Chem C 123:23863–23871

    Article  CAS  Google Scholar 

  27. Zhu Y, Peng W (2019) J Mater Chem A 7:23577–23603

    Article  CAS  Google Scholar 

  28. Li Z, Gao C, Yang L (2019) J Alloys Compo 798:500–506

    Article  CAS  Google Scholar 

  29. Bhauriyal P, Pathak B (2019) Chem An Asian J 520

  30. Li W, Kim U-H (2017) ACS Nano 11:5853–5863

    Article  CAS  PubMed  Google Scholar 

  31. Zhang Y, Pan Z, Yang J, Chen J, Chen K, Yan K, He M (2022) Powder Technol 399:1. https://doi.org/10.1016/j.powtec.2022.117193

    Article  CAS  Google Scholar 

  32. Xiong Q, Chen Z, Huang J, Zhang M, Song H, Hou X, Feng Z (2020) Rare Met 39:589–596. https://doi.org/10.1007/s12598-020-01385-6

    Article  CAS  Google Scholar 

  33. Lu T, Yan W, Feng G, Luo X, Hu Y, Guo J, Ding S (2022). Green Chem. https://doi.org/10.1039/D2GC00869F

    Article  Google Scholar 

  34. Li Z, Teng M, Yang R, Lin F, Fu Y, Lin W, Liao Y (2022) Sens Actua B Chem 361:131691. https://doi.org/10.1016/j.snb.2022.131691

    Article  CAS  Google Scholar 

  35. Yu F, Zhu Z, Li C, Li W, Liang R, Yu S, Zhang Z (2022) Appl Cataly B Environ 314:121467. https://doi.org/10.1016/j.apcatb.2022.121467

    Article  CAS  Google Scholar 

  36. Hu X, Zhang P, Wang D, Jiang J, Chen X, Liu Y, Li P (2021) Biosens Bioelectron 182:113188

    Article  CAS  PubMed  Google Scholar 

  37. Zhuo Z, Wan Y, Guan D, Ni S, Wang L, Zhang Z, Zhang BT (2020) Adv Sci 7:1903451. https://doi.org/10.1002/advs.201903451

    Article  CAS  Google Scholar 

  38. Feng Z, Li G, Wang X, Gómez-García CJ, Xin J, Ma H, Gao K (2022) Chem Eng J 445:136797. https://doi.org/10.1016/j.cej.2022.136797

    Article  CAS  Google Scholar 

  39. Liu C, Ying P (2022) Chin Phys B 31:26201

    Article  Google Scholar 

  40. Li H, Zhu H, Zhao R (2022). New J Chem. https://doi.org/10.1039/D2NJ01702D

    Article  Google Scholar 

  41. Huang Z, Cao S, Yu J, Tang X, Guo Y, Guo Y, Zhan W (2022) Environ Sci Technol 56:9661–9671

    Article  CAS  PubMed  Google Scholar 

  42. Yang Y, Wang SQ, Wen H, Ye T, Chen J, Li CP, Du M (2019) Angew Chem 58:15362–15366

    Article  CAS  Google Scholar 

  43. Bai B, Rao D, Chang T, Guo ZJ (2019) Hydrology 578:124080

    Article  CAS  Google Scholar 

  44. Wang Y, Wu X, Liu J, Zhai Z, Yang Z, Xia J, Zhang QJ (2022) Environ Chem Eng 10:107091

    Article  CAS  Google Scholar 

  45. Liu P, Li S, Zhang L, Yin X, Ma Y (2022). Catal Sci Technol. https://doi.org/10.1039/d2cy00474g

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lakshman MJ (2022) Synthetic Chem 1:48–51

    Google Scholar 

  47. Alizadeh T, Jahani R (2015) Mater Chem Phys 168:180–186

    Article  CAS  Google Scholar 

  48. Hashemi SA, Farhangdoost K, Ma W, Moghadam DG, Nejad RM, Berto F (2022) Theor Appl Fract Mech 122:103573

    Article  Google Scholar 

  49. Liu R, Hu Y, Xu J, Cai A, Wu A, Chen L, Wang F (2021) Oncologie 23:303–320. https://doi.org/10.32604/oncologie.2021.018514

    Article  Google Scholar 

  50. Zhao G, Hooman M, Yarigarravesh M, Algarni M, Opulencia MJC, Alsaikhan F, Sarjadi MS (2022) Arab J Chem 15:104115

    Article  CAS  Google Scholar 

  51. Kadhim MM, Sead FF, Jalil AT, Taban TZ, Rheima AM, Almashhadani HA, Hamel S (2022) Monatsh Chem 153:589–596

    Article  CAS  Google Scholar 

  52. Budi HS, Davidyants A, Rudiansyah M, Ansari MJ, Suksatan W, Sultan MQ, Kazemnejadi M (2022) Mater Today Commun 32:104108

    Article  CAS  Google Scholar 

  53. Salahdin OD, Sayadi H, Solanki R, Parra RMR, Al-Thamir M, Jalil AT, Kianfar E (2022) Appl Phys A 128:1–23

    Article  Google Scholar 

  54. Jasim SA, Hadi JM, Jalil AT, Opulencia MJC, Hammid AT, Tohidimoghadam M, Moghaddam-Manesh M (2022) Front Chem 10:1–10

    Article  Google Scholar 

  55. Honarvari B, Karimifard S, Akhtari N, Mehrarya M, Moghaddam ZS, Ansari MJ, Chiani M (2022) Molecules 27:4634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zhang Y, Li C, Ji H, Yang X, Yang M, Jia D, Zhang X, Li R, Wang J (2017) Int J Mach Tools Manuf 122:81–97

    Article  Google Scholar 

  57. Yang M, Li C, Zhang Y, Jia D, Zhang X, Hou Y, Li R, Wang J (2017) Int J Mach Tools Manuf 122:55–65

    Article  Google Scholar 

  58. Wang X, Li C, Zhang Y, Said Z, Debnath S, Sharma S, Yang M, Gao T (2022) Int J Adv Manuf Technol 119:631–646

    Article  Google Scholar 

  59. Yang YY, Gong YD, Li CH, Wen XL, Sun JY (2021) J Mater Process Technol 291:117023

    Article  CAS  Google Scholar 

  60. Gao T, Zhang Y, Li C, Wang Y, Chen Y, An Q, Zhang S, Li HN, Cao H, Muhammad Ali H, Zhou Z, Sharma S (2022) Front Mech Eng 17:24

    Article  Google Scholar 

  61. Xu W, Li Ch, Zhang Y, Muhammad Ali H, Sharma S, Li R, Yang M, Gao T, Liu M, Wang X, Said Z, Liu X, Zou Z (2022). Int J Extrem Manuf. https://doi.org/10.1088/2631-7990/ac9652

    Article  Google Scholar 

  62. Tang Y, Chen W (2021) Chem Phys Chem 22:606–618

    Article  CAS  PubMed  Google Scholar 

  63. Jiang Q, Zhang J (2020) J Mater Chem A 8:287–295

    Article  CAS  Google Scholar 

  64. Xu G, Wang R (2017) Carbon 118:35–42

    Article  CAS  Google Scholar 

  65. Velez RP, Bentrup U (2017) Top Catal 60:1641–1652

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our university for computational help.

Author information

Authors and Affiliations

Authors

Contributions

Ahmed B. Mahdi (Funding acquisition, Investigation, Methodology), Rathab Abbass (Project administration, Resources, Software), Gufran Abd (Supervision, Validation, Visualization), Ashraq Mohammed Kadim (Conceptualization, Data curation, Formal analysis), Munthir Mohammed Radhy AL Kubaisy (Validation, Formal analysis, Methodology), Samar Emad Izzat (Funding acquisition, Methodology, Data curation), Qiao (Conceptualization, Data curation, Formal analysis).

Corresponding author

Correspondence to Jinlian Qiao.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Consent to Participate

I confirmed.

Consent for Publication

I confirmed.

Ethical Approval

All procedures performed in studies involving human participants are in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Conflicts of Interest/Competing Interests

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

In this paper, the structures of complexes of FO, SiO, O2, FO2and SiO2 with Fe-CNT, V-CNT, Fe-BNT and V-BNNT are presented in Figures 1S and 2S. The oxidation pathways and structures of studied complexes for SiO and FO oxidation are presented in Figures 3S and 4S. The calculated energies of complexes for SiO and FO oxidation on nanotube surfaces are presented in Table 1S.

Supplementary file1 (DOCX 1003 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahdi, A.B., Abbass, R., Abd, G. et al. Investigation of SiO and FO Oxidation Mechanisms by Carbon and Boron Nitride as Acceptable Nano-catalysts. Silicon 15, 3485–3495 (2023). https://doi.org/10.1007/s12633-022-02271-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-02271-9

Keywords

Navigation