Skip to main content
Log in

A DFT investigation of performance of metal-doped nanotubes as acceptable catalysts to SiO oxidation

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

The Fe-doped nanotubes can be considered as novel catalysts to SiO oxidation. The information of SiO oxidation on nano-catalysts is not clear. In this study, the SiO oxidation on Fe-carbon nanotube (CNT) and Fe-boron nitride nanotube (BNNT) is examined through Langmuir-Hinshelwood (LH) and Eley-Rideal (ER) paths. The SiO joins in the Fe atom of Fe-surface-\(\hbox {O}_{\mathrm {2}}\)* and Fe-surface-O* to create important structures with minor barrier energy. Cis-Fe-surface-OSiOO* in the ER is more stable than structures in LH pathway. In the LH and ER mechanisms the one and two \(\hbox {SiO}_{\mathrm {2}}\) are released at normal temperature, respectively. The abilities of Fe-CNT and Fe-BNNT to oxidation of SiO is investigated, and Fe-CNT and Fe-BNNT as novel metal-doped catalysts are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ganster P 2010 Phys. Chem. B81 5315

    Google Scholar 

  2. Kim B H 2011 J. Appl. Chem.110 513

    Google Scholar 

  3. Kajihara K 2015 J. Chem. Phys.98 29

    Google Scholar 

  4. Bongiorno A 2014 Phys. Rev. B70 195312

    Article  Google Scholar 

  5. Itoh M 2008 J. Appl. Phys.103 026101

    Article  Google Scholar 

  6. Takahashi Y 2014 Appl. Phys. Lett.84 876

    Google Scholar 

  7. Robinson J A 2016 Nano Lett.11 61747

    Google Scholar 

  8. Cho K 2013 Nano Lett.2 3513

    Google Scholar 

  9. Snow E 2015 Science3 71942

    Google Scholar 

  10. Peng S 2014 Chem. Phys. Lett.12 387271

    Google Scholar 

  11. Yeung C S 2018 J. Phys. Chem. C11 27401

    Google Scholar 

  12. Yoosefian M 2014 Struct. Chem.3 259

    Google Scholar 

  13. Star A 2006 J. Phys. Chem. B6 11021014

    Google Scholar 

  14. Haruta M 2013 Chem. Rec.4 375

    Google Scholar 

  15. Anderson W 2008 Nano Lett.3 8195

    Google Scholar 

  16. Zhou X 2007 J. Mol. Struct.11 82265

    Google Scholar 

  17. Castellino P 2006 Chem. Select1 40

    Google Scholar 

  18. Wei M 2010 Chem. Phys.41 96

    Google Scholar 

  19. Arnaldsson N 2014 J. Phys. Chem.1 57

    Google Scholar 

  20. Kishimoto T 2017 Chem. Lett.17 581

    Google Scholar 

  21. Munoz J 2016 Phys. Chem.14 28

    Google Scholar 

  22. Yang Q 2016 Catal. Chem.98 22

    Article  Google Scholar 

  23. Artyushkova K 2013 Chem. Catal.18 41

    Google Scholar 

  24. Gao M 2016 Nano Lett.5 321

    Google Scholar 

  25. Tan Z and Li H 2019 J. Mater. Chem. A7 1607

    Article  CAS  Google Scholar 

  26. Sun M and Zhang G 2015 Sci. China Mater.58 683

    Article  CAS  Google Scholar 

  27. Liu B and Wei L 2015 J. Cryst. Growth277 293

    Article  Google Scholar 

  28. Sharghi H and Aboonajmi J 2018 Adv. Organomet. Chem.3 4124

    Article  Google Scholar 

  29. Kizuka T and Miyazawa K 2017 J. Nanotechnol.3 613746

    Google Scholar 

  30. Chen Y 2019 Chem. Phys.152 894

    Google Scholar 

  31. Li D 2007 Nano Scale19 118

    Google Scholar 

  32. Jaifi F 2003 J. Chem. Phys.8 28

    Google Scholar 

  33. Broda M A 2011 J. Mol. Phys.67 209

    Google Scholar 

  34. Kupka T 2012 J. Mol. Phys.38 241

    Google Scholar 

  35. Kupka T and Kaminsky J 2012 Vibr. Spectrosc.63 432

    Article  Google Scholar 

  36. Taylor M 2006 Chem. Spect.24 636

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meysam Najafi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, W., Yan, L., Li, Y. et al. A DFT investigation of performance of metal-doped nanotubes as acceptable catalysts to SiO oxidation. Bull Mater Sci 43, 127 (2020). https://doi.org/10.1007/s12034-020-02099-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02099-2

Keywords

Navigation