Skip to main content
Log in

A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2 + ½O2 → SO3) and CO (CO + ½O2 → CO2)

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

The oxidation of sulfur dioxide and carbon monoxide on the surface of metal-doped nanotube catalysts is investigated, in particular on Cu-doped carbon nanotube (CNT), Cu-doped boron nitride nanotube (BNNT), Zn-doped CNT, and Zn-doped BNNT via the Eley–Rideal and Langmuir–Hinshelwood mechanisms. The reaction energies and barrier energies for all the reaction steps involved in the oxidation of SO2 and carbon monoxide on the studied catalysts are calculated and compared. A suitable mechanism with lower barrier energies and higher reaction energies for the oxidation of sulfur dioxide and carbon monoxide is considered. The results show that the barrier energies for the reaction steps in the oxidation of sulfur dioxide and carbon monoxide molecules are lower on Cu-doped BNNT and Zn-doped BNNT compared with Cu-doped CNT and Zn-doped CNT, respectively. Finally, the Cu-doped CNT and Zn-doped CNT catalysts are proposed for the oxidation of sulfur dioxide and carbon monoxide molecules with suitable performance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mao, Y., Wang, Z., Wang, H.-F., Hu, P.: Understanding catalytic reactions over zeolites: A density functional theory study of selective catalytic reduction of NOx by NH3 over Cu-SAPO-34. ACS Catal. 6, 7882–7891 (2016)

    Google Scholar 

  2. Zhong, L., Cai, W., Zhong, Q.: Evaluation of cerium modification over Cr/Ti-PILC for NO catalytic oxidation and their mechanism study. RSC Adv. 4, 43529–43537 (2014)

    Google Scholar 

  3. Bray, J.M., Schneider, W.F.: Effects of ferrocenyl proximity and monomer presence during oxidation for the redox-switchable polymerization of l-lactide. ACS Catal. 5, 1087–1099 (2015)

    Google Scholar 

  4. Zhong, L., Yu, Y., Cai, W., Geng, X., Zhong, Q.: Modified potential for atomistic simulation of the growth of carbon materials from binary alloy catalysts. Phys. Chem. Chem. Phys. 17, 36–45 (2015)

    Google Scholar 

  5. Bhatia, D., McCabe, R.W., Harold, M.P., Balakotaiah, V.: Process intensification in nitric acid plants by catalytic oxidation of nitric oxide. J. Catal. 266, 106–119 (2009)

    Google Scholar 

  6. Choi, S.O., Penninger, M., Kim, C.H., Schneider, W.F.: Experimental and computational investigation of effect of Sr on NO oxidation and oxygen exchange for La1–xSrxCoO3 perovskite catalysts. ACS Catal. 3, 2719–2728 (2013)

    Google Scholar 

  7. Liu, S., Zhang, M., Huang, Y., Zhao, K., Gao, Z., Wu, M.: Elastic constants, viscosity and response time in nematic liquid crystals doped with ferroelectric nanoparticles. RSC Adv. 4, 29180–29186 (2014)

    Google Scholar 

  8. Zhong, L., Cai, W., Yu, Y., Zhong, Q.: In situ polymerization of sulfonated polyaniline in layered double hydroxide host matrix for corrosion protection. Appl. Surf. Sci. 325, 52–63 (2015)

    Google Scholar 

  9. Bhattacharjee, D., Mishra, B.K., Chakrabartty, A.K.: Rhodamine-based field-induced single molecule magnets in Yb(iii) and Dy(iii) series. New J. Chem. 39, 2209–2216 (2015)

    Google Scholar 

  10. Colom, J.M., Alzueta, M.U., Cordtz, R.: Schramm, experimental investigation of nitrogen species distribution in wood combustion and their influence on NOx reduction by combining air staging and ammonia injection. J. Energy Fuels 30, 5816–5824 (2016)

    Google Scholar 

  11. Cullis, C., Mulcahy, M.: Influence of sulfur dioxide on soot formation in diffusion flames. Combust. Flame 18, 225–292 (1972)

    Google Scholar 

  12. Cordtz, R.L., Schramm, J., Andreasen, A., Mayer, S.: Modeling the distribution of sulfur compounds in a large two stroke diesel engine. Energy Fuels 27, 1652–1660 (2013)

    Google Scholar 

  13. JahnischJ, K.: Chemistry in microstructured reactors. Ang. Chem. Int. Ed. 43, 406–446 (2004)

    Google Scholar 

  14. Alzueta, M., Bilbao, R., Glarborg, P.: Combust. Chemical conversion of SO2 in low-temperature and low-pressure oxyhydrogen flames. 1. Kinetic analysis of the process. Flame 127, 2234–2251 (2001)

    Google Scholar 

  15. Hindiyarti, L., Glarborg, P., Marshall, P.: Sulfur in the burnt gas of hydrogen-oxygen flames. J. Phys. Chem. A 111, 3984–3991 (2007)

    Google Scholar 

  16. Huang, J., Riisager, P., Wasserscheid, R.: Reversible physical absorption of SO2 by ionic liquids. Chem. Commun. 38, 4027–4029 (2006)

    Google Scholar 

  17. Vidal, B.F., Ollero, F.: Catalytic oxidation of S (IV) in seawater slurries of activated carbon. J. Environ. Sci. Technol. 39, 5031–5036 (2005)

    Google Scholar 

  18. Diana, L., Robison, S., Antonio, R.: Low temperature catalytic adsorption of SO2 on activated carbon. J. Phys. Chem. C 112, 15335–15340 (2008)

    Google Scholar 

  19. Carabineiro, S., Ramos, J.: Loureiro, VPO catalyst for n-butane oxidation to maleic anhydride: a goal achieved, or a still open challenge? J. Catal. Today 78, 203–210 (2003)

    Google Scholar 

  20. Tseng, H.H., Fu, C.H.: Carbon materials as catalyst supports for SO2 oxidation: catalytic activity of CuO–AC. Carbon 41, 139–149 (2003)

    Google Scholar 

  21. Zhou, B.H., Gao, Q., Wang, H.H.: The U.S. environmental protection agency’s particulate matter supersites program: an integrated synthesis of scientific findings and policy- and health-relevant insights. J. Air Waste Manag. Assoc. 61, 41–44 (2012)

    Google Scholar 

  22. He, S., Xie, Y., Dong, F.: Heinbuch, full valence band photoemission from liquid water using EUV synchrotron radiation. J. Phys. Chem. A 11244, 11067–11077 (2008)

    Google Scholar 

  23. Royer, S., Duprez, D.: Catalytic oxidation of carbon monoxide over transition metal oxides. ChemCatChem. 3, 24–65 (2011)

    Google Scholar 

  24. Keav, S., Matam, S.K., Ferri, D., Weidenkaff, A.: Single-crystal TiO2 nanorods assembly for efficient and stable cocatalyst-free photocatalytic hydrogen evolution. Catalyst 4, 227–236 (2018)

    Google Scholar 

  25. Huang, T.J., Tsai, D.H.: CO oxidation behavior of copper and copper oxides. Catal. Lett. 87, 173–178 (2003)

    Google Scholar 

  26. Aguila, G., Gracia, F., Araya, P.: Characterization and catalytic performance of ruthenium sulfide catalysts supported on H-BEA, Na– and Cs–H-BEA zeolites. Appl. Catal. A 343, 16–24 (2008)

    Google Scholar 

  27. Rattan, G., Prasad, R., Katyal, R.C.: Factors affecting CO oxidation reaction over nanosized materials: a review. Bull. Chem. React. Eng. Catal. 7, 112–123 (2012)

    Google Scholar 

  28. Carlsson, P.A., Skoglundh, M.: Effect of potassium addition on catalytic activity of SrTiO3 catalyst for diesel soot combustion. Appl. Catal. 101, 669–675 (2011)

    Google Scholar 

  29. Kulshreshtha, S., Sharma, S., Sasikala, R.: Surface chemistry of catalysis by gold. J. Chem. Technol. 11, 427–433 (2004)

    Google Scholar 

  30. Zhi, C., Bando, Y.: Non-linear coupling of polariton and dark exciton states in semiconductor microcavities. Solid State Commun. 135, 67–75 (2005)

    Google Scholar 

  31. Chen, H., Zhang, H., Fu, L.: Oxygen surface exchange studies in thin film Gd-doped ceria. Appl. Phys. Lett. 92, 243105–243109 (2008)

    Google Scholar 

  32. Chen, H., Chen, Y., Li, C.P.: Eu-doped boron nitride nanotubes as a nanometer-sized visible-light source. Adv. Mater. 19, 1845–1855 (2007)

    Google Scholar 

  33. Park, H.J., Park, M.: Single-walled carbon nanotube gold nanohybrids: application in highly effective transparent and conductive films. J. Phys. Chem. C 113, 13070–13075 (2009)

    Google Scholar 

  34. Bauhofer, W., Kovacs, J.Z.: Compressive failure of 0° unidirectional CFRP laminates by fibre microbuckling. Compos. Sci. Technol. 69, 1486–1489 (2009)

    Google Scholar 

  35. Zhi, C.Y., Bando, Y., Tang, C.C.: Phonon characteristics and cathodolumininescence of boron nitride nanotubes. Appl. Phys. Lett. 86, 213110–2131109 (2005)

    Google Scholar 

  36. Tang, C.C., Bando, Y.: A review and analysis of electrical percolation in carbon nanotube polymer composites. Chem. Commun. 12, 4599–4610 (2007)

    Google Scholar 

  37. Wu, J., Han, W.Q., Shan, W.: Hydrophobic nanocrystals coated with an amphiphilic polymer shell: a general route to water soluble nanocrystals. Nano Lett. 4, 647–654 (2004)

    Google Scholar 

  38. Arenal, R., Kociak, M.: Composites science and technology. Appl. Phys. Lett. 89, 073104–073110 (2006)

    Google Scholar 

  39. Ishigami, Choi, M.: Electrolyte-gated charge accumulation in organic single crystals. J. Phys. Rev. Lett. 93, 196803–196811 (2004)

    Google Scholar 

  40. Makarova, M.V., Semenov, S.G., Kostikov, R.R.: Influence of the laser prepulse on proton acceleration in thin-foil experiments. J. Struct. Chem. 59, 43–46 (2018)

    Google Scholar 

  41. Semenov, S.G., Bedrina, M.E., Makarova, M.V., Titov, A.V.: A quantum chemical study of the Fe@C60 endocomplex. J. Struct. Chem. 58, 447–451 (2017)

    Google Scholar 

  42. Mansoori, A., Morsali, A., Heravi, M.M., Beyramabadi, S.A.: An additive definition of molecular complexity. J. Struct. Chem. 58, 462–470 (2017)

    Google Scholar 

  43. Najafi, M.: Adsorption and decomposition of H2O on cobalt surfaces: a DFT study. Appl. Surf. Sci. 384, 380–385 (2016)

    Google Scholar 

  44. Najafi, M., Palizian, M., Abbasi, Z., Varjovi, M.J.: A theoretical investigation of the N2O + SO2 reaction on surfaces of P-doped C60 nanocage and Si-doped B30N30 nanocage. Results Phys. 7, 2619–2625 (2017)

    Google Scholar 

  45. Gao, W., Abrishamifar, S., Rajaei, G., Razavi, R., Najafi, M.: Possible scenarios for SiS formation in the interstellar medium: electronic structure calculations of the potential energy surfaces for the reactions of the SiH radical with atomic sulphur and S2. Chem. Phys. Lett. 695, 44–50 (2018)

    Google Scholar 

  46. Nematollahi, P., Neyts, E.C.: First-principles surface interaction studies of aluminum-copper and aluminum-copper-magnesium secondary phases in aluminum alloys. Appl. Surf. Sci. 439, 934–945 (2018)

    Google Scholar 

  47. Esrafili, M.D., Mousavian, P.: Growth (AlCrNbSiTiV)N thin films on the interrupted turning and properties using DCMS and HIPIMS system. Appl. Surf. Sci. 440, 580–585 (2018)

    Google Scholar 

  48. Esrafili, M.D., Asadollahi, S.: Destabilizing the AXH tetramer by mutations: mechanisms and potential antiaggregation strategies. J. Mol. Graph. Model. 85, 323–330 (2018)

    Google Scholar 

  49. Kresse, G., Furthmüller, J.: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. J. Phys. Rev. B Condens. Matter Mater. Phys. 54, 11169–11186 (1996)

    Google Scholar 

  50. Kresse, G., Furthmüller, J.: Generalized gradient approximation made simple. J. Comput. Mater. Sci. 6, 15–50 (1996)

    Google Scholar 

  51. Perdew, J.P., Burke, K., Ernzerhof, M.: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Phys. Rev. Lett. 77, 3865–3868 (1996)

    Google Scholar 

  52. Kresse, G., Joubert, D.: From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B Condens. Matter Mater. Phys. 59, 1758–1775 (1999)

    Google Scholar 

  53. Wang, H.-F., Kavanagh, R., Guo, Y.-L.: A thermally stable gold(III) hydride: synthesis, reactivity, and reductive condensation as a route to gold(II) complexes. Angew. Chem. Int. Ed. 51, 6657–6661 (2012)

    Google Scholar 

  54. Wang, H.-F., Kavanagh, R., Guo, Y.-L., Guo, Y., Lu, G., Hu, P.: A thermally stable gold(III) hydride: synthesis, reactivity, and reductive condensation as a route to gold(II) complexes. J. Catal. 296, 110–119 (2012)

    Google Scholar 

  55. Hu, W., Lan, J., Guo, Y., Cao, X.-M., Hu, P.: Origin of efficient catalytic combustion of methane over Co3O4(110): active low-coordination lattice oxygen and cooperation of multiple active sites. ACS Catal. 6, 5508–5519 (2016)

    Google Scholar 

  56. Wang, D., Jiang, J., Wang, H.F., Hu, P.: Revealing the volcano-shaped activity trend of triiodide reduction reaction: a DFT study coupled with microkinetic analysis. ACS Catal. 6, 733–741 (2016)

    Google Scholar 

  57. Nørskov, J.K., Bligaard, T., Logadottir, A., Kitchin, J.R.: The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, 23–26 (2005)

    Google Scholar 

  58. Peng, C., Wang, H.F., Hu, P.: Synthesis of MOF templated Cu/CuO@TiO2 nanocomposites for synergistic hydrogen production. Phys. Chem. Chem. Phys. 18, 14495–14502 (2016)

    Google Scholar 

  59. Ruiz, V.G., Liu, W., Zojer, E., Tkatchenko, A.: Perspective: fifty years of density-functional theory in chemical physics. Phys. Rev. Lett. 108, 146103 (2012)

    Google Scholar 

  60. Mahmood, A., Longo, R.L.: Observation of combination bands of the HOOO and DOOO radicals using infrared action spectroscopy. Phys. Chem. Chem. Phys. 87, 1–12 (2014)

    Google Scholar 

  61. Hohenstein, J.: Density-functional theory with screened van der Waals interactions for the modeling of hybrid inorganic-organic systems. Chem. Phys. 15, 128–134 (2006)

    Google Scholar 

  62. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–220 (2008)

    Google Scholar 

  63. Wheeler, S.E., Moran, A., Pieniazek, S.N., Houk, K.N.: Accurate reaction enthalpies and sources of error in DFT thermochemistry for aldol, Mannich, and α-aminoxylation reactions. J. Phys. Chem. A 113, 10376–10379 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Cheng Li, Dangquan Zhang or Meysam Najafi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ashraf, M.A., Li, C., Zhang, D. et al. A theoretical investigation on the potential of copper- and zinc-doped nanotubes as catalysts for the oxidation of SO2 (SO2 + ½O2 → SO3) and CO (CO + ½O2 → CO2). J Comput Electron 19, 55–61 (2020). https://doi.org/10.1007/s10825-019-01418-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-019-01418-z

Keywords

Navigation