Skip to main content
Log in

Seven Strategies to Suppress the Ambipolar Behaviour in CNTFETs: a Review

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Ambipolar behaviour is the cloud that surrounds the desired nanoelectronics device, the carbon nanotube field effect transistor (CNTFET). Despite all the advancements in the fabrication processes, CNTFETs are not being used in logic applications. The suppression of ambipolar behaviour in CNTFETs will pave way for many high-performance circuits and designs. Novel ideas to suppress this behaviour are offered in the literature. Therefore, to help researchers to come up with more novel ideas, this paper reviews the presented research papers which have suggested and demonstrated some exemplary methods for the suppression of ambipolar characteristics in CNTFETs. This paper has categorized the various methods into seven interventions. These interventions ensure robust and reliable devices exhibiting unipolar behaviour.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analysed during the current study.

References

  1. Teri W (2001) Odom, electronic properties of single-walled carbon nanotubes. Aust J Chem 54:601–604

    Article  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  3. Iijima S, Ichihashi T (1993) Single-Shell carbon nanotubes of 1-nm diameter. Nature 363:603–605

    Article  CAS  Google Scholar 

  4. Dresselhaus M, Dresselhaus G, Eklund P (1996) Science of fullerenes and carbon nanotubes. Academic Press, New York

    Google Scholar 

  5. Avouris P, Hertel T, Martel R, Schmidt T, Shea H, Walkup R (1999) Carbon nanotubes: Nanomechanics, manipulation, and electronic devices. Appl Surf Sci 141:201–209

    Article  CAS  Google Scholar 

  6. Dresselhaus M, Dresselhaus G, Avouris P (eds) (2007) Carbon nanotubes: synthesis, structure, properties, vol 111. Springer Science Business Media

    Google Scholar 

  7. Kim Y-B (2011) Integrated circuit design based on carbon nanotube field effect transistor. Trans Electr Electron Mater 12(5):175–188

    Article  Google Scholar 

  8. Wildoer J, Venema L, Rinzler A, Smalley R, Dekker C (1998) Electronic structure of atomically resolved carbon nanotubes. Nature 391:59–64

    Article  CAS  Google Scholar 

  9. Wind SJ, Appenzeller J, Martel R, Derycke V, Avouris P (2002) “Vertical scaling of carbon nanotube field-effect transistors using top gate electrodes” Appl. Phys Lett 80:3817–3819

    CAS  Google Scholar 

  10. Javey A, Kim H, Brink M, Wang Q, Ural A, Guo J, McIntyre P, Lundstrom M, Dai H (2002) High- dielectrics for advanced carbon-nanotube transistors and logic gates. Nat Mater 1:241–246

    Article  CAS  PubMed  Google Scholar 

  11. Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris P (2001) Ambipolar electrical transport in semiconducting single wall carbon nanotubes. Phys Rev Lett 87(25):256–805

    Article  Google Scholar 

  12. Kotb Jabeur, Ian O’Connor, Sébastien Le Beux, David Navarro (2012) “Ambipolar double gate CNTFETs based reconfigurable logic cells" proc. IEEE/ACM International Symposium on Nanoscale Architectures, pp. 7–13

  13. Kotb Jabeur, Nataliya Yakymets, Ian O’Connor, Sébastien Le-Beux (2011) Fine-Grain Reconfigurable Logic Cells Based on Double-gate CNTFETs” Proc. Great lakes symposium on VLSI, pp. 19–24

  14. Kotb Jabeur, Ian O’Connor, David Navarro, Sébastien Le Beux (2012) Low-power design technique with ambipolar double gate devices” Proc. IEEE/ACM International Symposium on Nanoscale Architectures, pp. 14–21

  15. M. Haykel Ben Jamaa, Kartik Mohanram, Giovanni De Micheli (2010) “Power Consumption of Logic Circuits in Ambipolar Carbon Nanotube Technology” in Proc. Design, Automation and Test in Europe, pp.303–306

  16. Sharifi MJ, Ghasemi S (2010) Powerless XOR gate based on ambipolar CNT transistors. Electron Lett 46(22)

  17. Michele De Marchi, M Haykel Ben Jamaa, Giovanni De Micheli (2010) “Regular Fabric Design with Ambipolar CNTFETs for FPGA and Structured ASIC Applications” Proc. IEEE/ACM International Symposium on Nanoscale Architectures, pp. 65–70

  18. Ben Jamaa MH, Gaillardon P-E, Frégonèse S, De Marchi M, De Michelc G, Zimmer T, O’Connor I, Clermidy F (2011) FPGA design with double-gate carbon nanotube transistors. ECS Trans 34(1):1005–1010

    Article  CAS  Google Scholar 

  19. Jabeur K, Navarro D, O’Connor I, Gaillardon PE, Ben Jamaa MH, Clermidy F (2010) “Reducing transistor count in clocked standard cells with ambipolar double-gate FETs” Proc. IEEE/ACM International Symposium on Nanoscale Architectures,pp.47–52

  20. Aïssa B, Nedil M, Esam AH, Tabet N, Therriault D, Rosei F (2012) Ambipolaroperation of hybrid SiC-carbon nanotube based thin film transistors for logic circuits applications. Appl Phys Lett 101:043121

    Article  Google Scholar 

  21. Kim B, Jang S, Geier ML, Prabhumirashi PL, Hersam MC, Dodabalapur A (2014) Inkjet printed ambipolar transistors and inverters based on carbon nanotube/zinc tin oxide heterostructures. Appl Phys Lett 104:062101

    Article  Google Scholar 

  22. Kenarangi F, et al. (2019) "Exploiting Dual-Gate Ambipolar CNFETs for Scalable Machine Learning Classification." arXiv preprint arXiv:1912.04068

  23. O’Connor I, Liu J, Gaffiot F (2006) “CNTFET-based logic circuit design”, IEEE International Conference on Design and Test of Integrated Systems in Nanoscale Technology. https://doi.org/10.1109/DTIS.2006.1708734

  24. M Haykel Ben Jamaa, Kartik Mohanram, Giovanni De Micheli (2009) “Novel Library of Logic Gates with Ambipolar CNTFETs: Opportunities for Multi-Level Logic Synthesis”, Proc. Design, Automation and Test in Europe, pp. 622–627

  25. M Haykel Ben Jamaa, David Atienza, Yusuf Leblebici, Giovanni De Micheli (2008) “Programmable Logic Circuits Based on Ambipolar CNFET”, Proc. Design Automation Conference, pp. 339–340

  26. Jabeur K, O’Connor I, Yakymets N, Le Beux S (2014) Ambipolar double-gate FETs for the design of compact logic structures. IEEE Trans Nanotechnol 13:1063–1073

    Article  Google Scholar 

  27. Guo, Jing, Ali Javey, Hongjie Dai, Supriyo Datta, and Mark Lundstrom (2003) "Predicted performance advantages of carbon nanotube transistors with doped nanotubes as source/drain." arXiv preprint cond-mat/0309039

  28. Radosavljevic M, Freitag M, Thadani KV, Johnson AT (2002) Nonvolatile molecular memory elements based on Ambipolar nanotube field effect transistors. Nano Lett 2:761–764

    Article  CAS  Google Scholar 

  29. Fuhrer MS, Kim BM, Durkop T, Brintlinger T (2002) High-mobility nanotube transistor memory. Nano Lett 02(7):755–759

    Article  CAS  Google Scholar 

  30. Heinze S, Radosavljevic M, Tersoff J, Avouris P (2003) Unexpected scaling of the performance of carbon nanotube Schottky-barrier transistors. Phys Rev B 68(23):235418

    Article  Google Scholar 

  31. Yang X, Mohanram K, “Ambipolar electronics”, Rice University technical report TREE1002 (2010)

    Google Scholar 

  32. Javey A, Shim M, Dai H (2002) Electrical properties and devices of large-diameter single-walled carbon nanotubes. Appl Phys Lett 80(1064)

  33. Bisri SZ, Derenskyi V, Gomulya W, Salazar-Rios JM, Fritsch M, Fröhlich N, Jung S, Allard S, Scherf U, Loi MA (2016) Anomalous Carrier Transport in AmbipolarField-Effect Transistor of Large Diameter Single-Walled Carbon Nanotube Network. Adv Electron Mater 2:1500222

    Article  Google Scholar 

  34. Pfleiderer H (1986) Elementary ambipolar field-effect transistor model. IEEE Trans Electron Devices 33(1):145–147

    Article  Google Scholar 

  35. Pourfath M (2007) Dissertation on numerical study of quantum transport in carbon nanotube-based transistors

  36. Kim D-H, Huang J, Rao BK, Choi W (2006) Pseudo Y-Junction Single-Walled Carbon Nanotube Based Ambipolar Transistor Operating at Room Temperature. IEEE Trans Nanotechnol 5(6):731–736

    Article  Google Scholar 

  37. Kale S, Kondekar PN (2015) Suppression of ambipolar leakage current in Schottky barrier MOSFET using gate engineering. Electron Lett 51(19):1536–1538

    Article  CAS  Google Scholar 

  38. Ghoneim H, Knoch J, Riel H, Webb D, Bjork MT, Karg S, Lortscher E, Schmid H, Riess W (2009) "Interface engineering for the suppression of ambipolar behaviour in Schottky-barrier MOSFETs." In Ultimate Integration of Silicon, 2009.ULIS 2009. 10th International Conference on, pp. 69–72. IEEE

  39. Raad B, Nigam K, Sharma D, Kondekar P (2016) Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron Lett 52(09):770–772

    Article  CAS  Google Scholar 

  40. Pourfath M, Ungersboeck E, Gehring A, Cheong B-H, Park W-j, Kosina H, Selberherr S (2004) "Improving the ambipolar behavior of schottky barrier carbon nanotube field effect transistors." In Solid-State Device Research conference, 2004. ESSDERC 2004. Proceeding of the 34th European, pp.429–432. IEEE

  41. Yoon Y, Fodor J, Guo J (2008) A computational study of vertical partial-gate carbon nanotube FETs. IEEE Trans Electron Devices 55(1):283–288

    Article  CAS  Google Scholar 

  42. Lin Y, Appenzeller J, Avouris P (2004) Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett 4(5):947–950

    Article  CAS  Google Scholar 

  43. Wongsaeng C, Singjai P (2014) Mobilities in ambipolar field effect transistors based on single-walled carbon nanotube network and formed on a gold nanoparticle template. Appl Phys Lett 104:142103

    Article  Google Scholar 

  44. Fallah M, Faez R, Jafari AH (2013) Simulation of a carbon nanotube field effect transistor with two different gate insulators. Scientia Iranica F 20(6):2332–2340

    Google Scholar 

  45. Ossaimee M, Gamal S, Shaker A (2015) Gate dielectric constant engineering for suppression of ambipolar conduction in CNTFET. Electron Lett 51(6):503–504

    Article  CAS  Google Scholar 

  46. Radosavljevic M, Heinze S, Tersoff J, Avouris P (2003) Drain voltage scaling in carbon nanotube transistors. Appl Phys Lett 83(12):2435–2437

    Article  CAS  Google Scholar 

  47. Guo J, Datta S, Lundstrom M (2004) A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans Electron Devices 51:172–177

    Article  CAS  Google Scholar 

  48. Heinze S, Tersoff J, Avouris P (2003) Electrostatic engineering of nanotube transistors for improved performance. Appl Phys Lett 83(24):5038–5040

    Article  CAS  Google Scholar 

  49. Odintsov A (2000) Schottky barriers in carbon nanotube heterojunctions. Phys Rev Lett 85:150–153

    Article  CAS  PubMed  Google Scholar 

  50. Li J, Zhang Q (2005) Simulation of ambipolar-to-unipolar conversion of carbon nanotube-based field effect transistors. Nanotechnology 16(8):1415

    Article  CAS  Google Scholar 

  51. Chen L-Y, Chang C-S (2014) In situ tuning and probing the ambipolar field effect on multiwall carbon nanotubes. Appl Phys Lett 105:243110

    Article  Google Scholar 

  52. Goh RGS, Bell JM, Motta N, Ho PK-H, Waclawik ER (2009) p-Channel, n-Channel and ambipolar field-effect transistors based on functionalized carbon nanotube networks. Superlattice Microst 46:347–356

    Article  CAS  Google Scholar 

  53. Snow ES, Campbell PM, Ancona MG, Novak JP (2005) High-mobility carbon-nanotube thin-film transistors on a polymeric substrate. Appl Phys Lett 86:033105

    Article  Google Scholar 

  54. Kang SJ, Kocabas C, Ozel T, Shim M, Pimparkar N, Alam MA, Rotkin SV, Rogers JA (2007) High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat Nanotechnol 2:230–236

    Article  CAS  PubMed  Google Scholar 

  55. Kocabas C, Pimparkar N, Yesilyurt O, Kang SJ, Alam MA, Rogers JA (2007) Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett 7:1195–1202

    Article  CAS  PubMed  Google Scholar 

  56. Shiraishi M, Takenobu T, Iwai T, Iwasa Y, Kataura H, Ata M (2004) Single-walled carbon nanotube aggregates for solution-processed field effect transistors. Chem PhysLett 394:110–113

    CAS  Google Scholar 

  57. Park S (2015) Ji Hyun Nam, ja Hoon Koo, ting lei and Zhenan Bao, “enhancement of ambipolar characteristics in single-walled carbon nanotubes using C60 and fabrication of logic gates”. Appl Phys Lett 106:103501

    Article  Google Scholar 

  58. Duan Y, Juhala JL (2013) Solution-based fabrication of p-channel and n-channel field-effect transistors using random and aligned carbon nanotube networks. Microelectron Eng 103:18–21

    Article  CAS  Google Scholar 

  59. Collins PG, Bradley K, Ishigami M, Zettl A (2000) Extreme oxygen sensitivity of electronic properties of carbon nanotubes. Science 287:1801–1804

    Article  CAS  PubMed  Google Scholar 

  60. Kong J, Dai H (2001) Full and modulated chemical gating of individual carbon nanotubes by organic amine compounds. J Phys Chem B 105:2890–2893

    Article  CAS  Google Scholar 

  61. Derenskyi V, Gomulya W, Rios JMS, Fritsch M, Fröhlich N, Jung S, Allard S, Bisri SZ, Gordiichuk P, Herrmann A, Scherf U, Loi MA (2014) Carbon nanotube network Ambipolar field-effect transistors with 108 on/off ratio. Adv Mater 26:5969–5975

    Article  CAS  PubMed  Google Scholar 

  62. Bisri SZ, Gao J, Derenskyi V, Gomulya W, Iezhokin I, Gordiichuk P, Herrmann A, Loi MA (2012) High performance Ambipolar field-effect transistor of random network carbon nanotubes. Adv Mater 24:6147–6152

    Article  CAS  PubMed  Google Scholar 

  63. Derycke V, Martel R, Appenzeller J, Avouris P (2001) Carbon nanotube inter and intra molecular logic gates. Nano Lett 1(9):453–456

    Article  CAS  Google Scholar 

  64. Sumanasekera GU, Adu CKW, Fang S, Eklund PC (2000) Effects of gas adsorption and collisions on electrical transport in single-walled carbon nanotubes. Phys Rev Lett 85(5):1096

    Article  CAS  PubMed  Google Scholar 

  65. Bradley K, Jhi S-H, Collins PG, Hone J, Cohen ML, Louie SG, Zettl A (2000) Is the intrinsic thermoelectric power of carbon nanotubes positive? Phys Rev Lett 85(20):4361

    Article  CAS  PubMed  Google Scholar 

  66. Jhi S-H, Louie SG, Cohen ML (2000) Electronic properties of oxidized carbon nanotubes. Phys Rev Lett 85(8):1710

    Article  CAS  PubMed  Google Scholar 

  67. Minot ED, Yaish Y, Sazonova V, McEuen PL (2004) Determination of electron orbital magnetic moments in carbon nanotubes. Nature 428(6982):536–539

    Article  CAS  PubMed  Google Scholar 

  68. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773–2775

    Article  CAS  Google Scholar 

  69. Shimada T, Sugai T, Ohno Y, Kishimoto S, Mizu-tani T, Yoshida H, Okazaki T, Shinohara H (2004) Double-wall carbon nanotube field-effect transistors: Ambipolar transport characteristics. Appl Phys Lett 84:2412

    Article  CAS  Google Scholar 

  70. Morimoto T, Kuno A, Yajim S, Ishibash K, Tsuchiya K, Yajima H (2012) Effective energy gap of the double-walled carbon nanotubes with field effect transistors ambipolar characteristics. Appl Phys Lett 100:043107

    Article  Google Scholar 

  71. Kang D, Park N, Hyu J, Bae E (2005) Juhye K, Jujin Ki, and Wanjun Park, “adsorption-induced conversion of the carbon nanotube field effect transistor from ambipolar to unipolar behaviour” Appl. Phys Lett 86:093105

    Google Scholar 

  72. Park N, Lee AR, Kim H-S, Kim J-J, Lee J-O (2012) Controllable modification of the conduction properties of carbon nanotube devices through deposition of a metal overlayer onto the sidewalls. Phys E 44:1539–1542

    Article  CAS  Google Scholar 

  73. Javey A, Wang Q, Kim W, Dai H (2003) “Advancements in complementary carbon nanotube field-effect transistors”, IEEE Conference, IEDM 20030–7803–7873-3/03

  74. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  CAS  PubMed  Google Scholar 

  75. Martel R, Schmidt T, Shea HR, Hertel T, Avouris P (1998) Single- and multi-wall carbon nanotube field-effect transistors. Appl Phys Lett 73(17):2447–2449 (

    Article  CAS  Google Scholar 

  76. Freitag M, Radosavljevic M, Zhou Y, Smith WF (2001) Controlled creation of a carbon nanotube diode by a scanned gate. Appl Phys Lett 79(20):3326–3328

    Article  CAS  Google Scholar 

  77. Minot ED, Yaish Y, Sazonova V, Park J-Y, Brink M, McEuen PL (2003) Tuning carbon nanotube band gaps with strain. Phys Rev Lett 90:156401

    Article  CAS  PubMed  Google Scholar 

  78. Chen B-H, Wei J-H, Lo P-Y, Wang H-H, Lai M-J, Tsai M-J, Chao TS, Lin H-C, Huang T-Y (2006) A carbonnanotube field effect transistor with tunable conduction-type by electrostatic effects. Solid State Electron 50:1341–1348

    Article  CAS  Google Scholar 

  79. Li H, Zhang Q (2009) Tunable ambipolar Coulomb blockade characteristics in carbon nanotubes-gated carbon nanotube field-effect transistors. Appl Phys Lett 94:022101

    Article  Google Scholar 

  80. Jabeur K, O’Connor I, Le Beux S (2014) Ambipolar Independent Double Gate FET (Am-IDGFET) for the Design of Compact Logic Structures. IEEE Trans Nanotechnol 13(6):1063–1073

    Article  Google Scholar 

  81. Kim B, Liang K, Geier ML, Hersam MC, Dodabalapur A (2016) Enhancement of minority carrier injection in ambipolar carbon nanotube transistors using double-gate structures. Appl Phys Lett 109:023515

    Article  Google Scholar 

  82. Hsieh C-T, Citrin DS, Ruden PP (2007) Recombination-mechanism dependence of transport and light emission of ambipolar long-channel carbon-nanotube field-effect transistors. Appl Phys Lett 90:012118

    Article  Google Scholar 

  83. Yang X, Mohanram K (2011) Modeling and Performance Investigation of the double-gate carbon Nanotube transistor. IEEE Electron Device Lett 32:231

    Article  CAS  Google Scholar 

  84. Lin YM, Appenzeller J, Knoch J, Avouris P (2005) High performance carbon nanotube field-effect transistor with tunable polarities. IEEE Trans Nanotechnol 4:481–489

    Article  Google Scholar 

  85. Chen J, Klinke C, Afzali A, Avouris P (2004) "Air-stable chemicaldoping of carbon nanotube transistors [CNFETs]." In: Device Research Conference,2004. 62nd DRC. Conference Digest [Includes’ Late News Papers’] pp. 137–138. IEEE

  86. Rathore R, Kumar AS, Lindeman SV, Kochi JK (1998) Preparation and Structures of Crystalline Aromatic Cation-Radical Salts. Triethyloxonium Hexachloroan-timonate as a Novel (One-Electron) Oxidant. J Organomet Chem 63(17):5847–5856

    Article  CAS  Google Scholar 

  87. Ieong M, Narayanan V, Singh D, Topol A, Chan V, Ren Z (2006) Transistor scaling with novel materials. Mater Today 9:26–31

    Article  Google Scholar 

  88. Hwang H, Lee DH, Hwang JM (1996) Degradation of MOSFETs drive current due to halo ion implantation. Int Electron Dev Meet:567–570

  89. Zanchetta S, Todon A, Abramo A, Selmi L, Sangiorgi E (2002) Analytical and numerical study of the impact of halos on short channel and hot carrier effects in scaled MOSFETS. Solid State Electron 46:429–434

    Article  CAS  Google Scholar 

  90. Endoh T, Momma Y (2007) Study of 30-nm Double-Gate MOSFET with halo implantation technology using a two-dimensional device simulator. IEICE Trans Electron 90:1000–1005

    Article  Google Scholar 

  91. Reddy GV, Kumar MJ (2004) Investigation of the novel attributes of a single-halo double gate SOI MOSFET: 2D simulation study. Microelectron J 35:761–765

    Article  Google Scholar 

  92. Arefinia Z (2009) Ali a. Orouji “novel attributes in the performance and scaling effects of carbon nanotube field-effect transistors with halo doping”. Superlattice Microst 45:535–546

    Article  CAS  Google Scholar 

  93. Naderi A, Keshavarzi P, Orouji AA (2011) LDC–CNTFET: a carbon nanotube field effect transistor with linear doping profile channel. Superlattice Microst 50:145–156

    Article  CAS  Google Scholar 

  94. Arefinia Z (2009) Investigation of the performance and band-to-band tunnelling effect of a new double-halo-doping carbon nanotube field-effect transistor. Phys E Low Dimen Syst Nanostruct 41:1767–1771

    Article  CAS  Google Scholar 

  95. Hassaninia I (2008) Mohammad Hossein Sheikhi, and Zoheir Kordrostami. "Simu-lation of carbon nanotube FETs with linear doping profile near the source and draincontacts.". Solid State Electron 52.6:980–985

    Article  Google Scholar 

  96. Yousefi R, Saghafi K, Moravvej-Farshi MK (2010) Numerical study of lightly doped drain and source carbon nanotube field effect transistors. IEEE Trans Electron Devices 57(4):765–771

    Article  CAS  Google Scholar 

  97. Moghadam N, Aziziyan MR, Fathi D (2012) Design and simulation of double-lightly doped MOSCNT using non-equilibrium Green’s function. Appl Phys A Mater Sci Process 108(3):551–557

    Article  CAS  Google Scholar 

  98. Tahne BA, Naderi A (2017) SLD-MOSCNT: A new MOSCNT withstep–linear doping profile in the source and drain regions. Int J Mod Phys B 31(1):1650242

    Article  CAS  Google Scholar 

  99. Moghadam N, Moravvej-Farshi MK, Aziziyan MR (2013) Design and simulation of MOSCNT with band engineered source and drain regions. Microelectron Reliab 53(4):533–539

    Article  CAS  Google Scholar 

  100. Collins PG, Arnold MS, Avouris P (2001) Engineering carbon nanotubes and nanotube circuits using electrical breakdown. Science 292:706–709

    Article  CAS  PubMed  Google Scholar 

  101. Zeydi MM, Yousefi R (2016) A modified structure for MOSFET-like carbon nanotube FET. Appl Phys A Mater Sci Process 122:430

    Article  Google Scholar 

  102. Reena P, Sreedevi VT (2020) One instruction set computer with optimized polarity-tunable model of double gate CNTFETs. IET Circ Devices Syst 14(6):770–779

    Article  Google Scholar 

Download references

Acknowledgments

The author would like to thank Prof. Anand A Samuel for inspiring me to write a review paper.

Funding

The author declares that no funds, grants, or other support were received during the preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Contributions

There is only one author and the author contributed solely to surveying of all the papers and preparing the content of the manuscript. All figures were drawn by the author using Microsoft Visio.

Corresponding author

Correspondence to P Reena Monica.

Ethics declarations

Ethics Approval

The manuscript is not submitted to any other journal for simultaneous consideration.

The submitted work is original and is not published elsewhere.

Consent to Participate

I consent to participate according to the journal’s policies.

Consent for Publication

I consent for publication of my work in the journal.

Competing Interests

The author has no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reena Monica, P. Seven Strategies to Suppress the Ambipolar Behaviour in CNTFETs: a Review. Silicon 14, 10199–10216 (2022). https://doi.org/10.1007/s12633-022-01813-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01813-5

Keywords

Navigation