Skip to main content
Log in

The Effect of Low-Temperature Annealing on the Electrical Characteristics of Carbon Nanotube Network Field-Effect Transistors

  • Original Research Article
  • Published:
Journal of Electronic Materials Aims and scope Submit manuscript

Abstract

Carbon nanotube network field-effect transistors (CNT-FETs) have been recognized as strong candidates for post-Si era electronics due to their higher speed, lower power consumption, and high sensing capabilities. In this study, CNT-FET structures were fabricated on heavily doped Si substrates with an oxide layer. To investigate the effect of low-temperature annealing on the electrical properties, the transistors were annealed at 120 °C for 1 h, the transfer and output characteristics of the transistors were measured, and the key electrical parameters, such as field-effect mobility, effective mobility, threshold voltage, interface states, transconductance, drain conductance, resistance, and hysteresis gap values were obtained. A series of device parameter evaluation results showed that low-temperature annealing treatment in air can effectively improve the on-state current, increase the mobility, and reduce the device threshold voltage and subthreshold swing. In addition, a large decrease in contact resistance, from 1.9 MΩ to 12.3 kΩ, was observed after low-temperature annealing. It has been found that low-temperature annealing has a tremendous improvement effect on the electrical characteristics of CNT-FETs and should be considered during the production and design stages of CNT transistors.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. P. Sakalas, M. Claus, M. Schroter, and A. Rumiantsev, Experimental characterization of temperature-dependent electron transport in single-wall multi-tube carbon nanotube transistors. Phys. Status Solidi (RRL) Rapid Res. Lett. 6(2), 62 (2012).

    Article  CAS  ADS  Google Scholar 

  2. N.R. Pradhan, H. Duan, J. Liang, and G.S. Iannacchione, The specific heat and effective thermal conductivity of composites containing single-wall and multi-wall carbon nanotubes. Nanotechnology 20(24), 245705 (2009).

    Article  CAS  PubMed  ADS  Google Scholar 

  3. B. Kim, J. Lee, S. Namgung, J. Kim, J.Y. Park, M.S. Lee, and S. Hong, DNA sensors based on CNT-FET with floating electrodes. Sens. Actuators B Chem. 169, 182 (2012).

    Article  CAS  Google Scholar 

  4. L.N. Lisetski, S.S. Minenko, A.P. Fedoryako, and N.I. Lebovka, Dispersions of multiwalled carbon nanotubes in different nematic mesogens: the study of optical transmittance and electrical conductivity. Physica E 41(3), 431 (2009).

    Article  CAS  ADS  Google Scholar 

  5. Z. Zhu, Y.C. Chan, Z. Chen, C.L. Gan, and F. Wu, Effect of the size of carbon nanotubes (CNTs) on the microstructure and mechanical strength of CNTs-doped composite Sn0.3Ag0.7Cu-CNTs solder. Mater. Sci. Eng. A 727, 160 (2018).

    Article  CAS  Google Scholar 

  6. T.W. Ebbesen, Carbon nanotubes. Annu. Rev. Mater. Sci. 24(1), 235 (1994).

    Article  CAS  ADS  Google Scholar 

  7. C.G. Almudever and A. Rubio, Variability and reliability analysis of CNFET technology: impact of manufacturing imperfections. Microelectron. Reliab. 55(2), 358 (2015).

    Article  CAS  Google Scholar 

  8. G.J. Choi, T.M. Gwon, D.H. Kim, J. Park, S.M. Kim, S.H. Oh, and S.J. Kim, CNT bundle-based thin intracochlear electrode array. Biomed. Microdevice 21, 1 (2019).

    Article  CAS  Google Scholar 

  9. M. Tuo, L. Wang, M.R. Amer, X. Yu, S.B. Cronin, and H. Xin, Suspended individual SWCNT characterization via bottom gate FET configuration. Microw. Opt. Technol. Lett. 59(10), 2610–2614 (2017).

    Article  Google Scholar 

  10. N. Rani, K. Khurana, and N. Jaggi, Impact of γ-irradiation on the structural and electrical characteristics of functionalized multiwalled carbon nanotubes. Mater. Sci. Semicond. Process. 151, 106999 (2022).

    Article  CAS  Google Scholar 

  11. M.H. Yang, K.B. Teo, L. Gangloff, W.I. Milne, D.G. Hasko, Y. Robert, and P. Legagneux, Advantages of top-gate, high-k dielectric carbon nanotube field-effect transistors. Appl. Phys. Lett. 88(11), 113507 (2006).

    Article  ADS  Google Scholar 

  12. G. Ruffini, S. Dunne, E. Farrés, J. Marco-Pallarés, C. Ray, E. Mendoza, and C. Grau, A dry electrophysiology electrode using CNT arrays. Sens. Actuators A 132(1), 34 (2006).

    Article  CAS  Google Scholar 

  13. S.J. Tans, A.R. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube. Nature 393(6680), 49 (1998).

    Article  CAS  ADS  Google Scholar 

  14. R. Seidel, M. Liebau, G.S. Duesberg, F. Kreupl, E. Unger, A.P. Graham, and W. Pompe, In-situ contacted single-walled carbon nanotubes and contact improvement by electroless deposition. Nano Lett. 3(7), 965 (2003).

    Article  CAS  ADS  Google Scholar 

  15. D.N. Madsen, K. Mølhave, R. Mateiu, A.M. Rasmussen, M. Brorson, C.J. Jacobsen, and P. Bøggild, Soldering of nanotubes onto microelectrodes. Nano Lett. 3(1), 47 (2003).

    Article  CAS  ADS  Google Scholar 

  16. Y. Woo, G.S. Duesberg, and S. Roth, Reduced contact resistance between an individual single-walled carbon nanotube and a metal electrode by a local point annealing. Nanotechnology 18(9), 095203 (2007).

    Article  ADS  Google Scholar 

  17. K. Yu, G. Lu, K. Chen, S. Mao, H. Kim, and J. Chen, Controllable photoelectron transfer in CdSe nanocrystal–carbon nanotube hybrid structures. Nanoscale 4(3), 742 (2012).

    Article  CAS  PubMed  ADS  Google Scholar 

  18. Z. Hou, Y. Liu, G. Niu, Y. Sun, J. Li, J. Zhao, and S. Wu, Carbon nanotube network film-based field-effect transistor interface state optimization by ambient air annealing. J. Appl. Phys. 133(12), 125303 (2023).

    Article  CAS  ADS  Google Scholar 

  19. R.S. Park, M.M. Shulaker, G. Hills, L. Suriyasena Liyanage, S. Lee, A. Tang, and H.S.P. Wong, Hysteresis in carbon nanotube transistors: measurement and analysis of trap density, energy level, and spatial distribution. ACS Nano 10(4), 4599 (2016).

    Article  CAS  PubMed  Google Scholar 

  20. J.O. Lee, C. Park, J.J. Kim, J. Kim, J.W. Park, and K.H. Yoo, Formation of low-resistance ohmic contacts between carbon nanotube and metal electrodes by a rapid thermal annealing method. J. Phys. D Appl. Phys. 33(16), 1953 (2000).

    Article  CAS  ADS  Google Scholar 

  21. V.S. Gangoli, C.J. Barnett, J.D. McGettrick, A. Orbaek White, and A.R. Barron, Increased electrical conductivity of carbon nanotube fibers by thermal and voltage annealing. C 8(1), 1 (2021).

  22. D. Yokoyama, T. Iwasaki, K. Ishimaru, S. Sato, T. Hyakushima, M. Nihei, and H. Kawarada, Electrical properties of carbon nanotubes grown at a low-temperature for use as interconnects. Jpn. J. Appl. Phys. 47(4), 1985 (2008).

    Article  CAS  ADS  Google Scholar 

  23. T. Pei, Z. Zhang, Z. Wang, L. Ding, S. Wang, and L.M. Peng, Temperature performance of doping-free top-gate CNT field-effect transistors: potential for low-and high-temperature electronics. Adv. Funct. Mater. 21(10), 1843 (2011).

    Article  CAS  Google Scholar 

  24. D. Estrada, S. Dutta, A. Liao, and E. Pop, Reduction of hysteresis for carbon nanotube mobility measurements using pulsed characterization. Nanotechnology 21(8), 085702 (2010).

    Article  ADS  Google Scholar 

  25. A.V. Krasheninnikov, K. Nordlund, and J. Keinonen, Production of defects in supported carbon nanotubes under ion irradiation. Phys. Rev. B 65(16), 165423 (2002).

    Article  ADS  Google Scholar 

  26. C.W. Jang, Y.T. Byun, D.H. Woo, S. Lee, and Y.M. Jhon, Enhanced adhesion between carbon nanotubes and substrate surfaces by low-temperature annealing. J. Korean Phys. Soc. 61, 2096 (2012).

    Article  CAS  ADS  Google Scholar 

  27. W.B. Choi, B.H. Cheong, J.J. Kim, J. Chu, and E. Bae, Selective growth of carbon nanotubes for nanoscale transistors. Adv. Funct. Mater. 13(1), 80 (2003).

    Article  CAS  Google Scholar 

  28. H. Altuntas, K. Snashall, F. Oke-Altuntas, I. Jayawerdane, M.O. Tas, and S.R.P. Silva, Effect of pyrene-1 boronic acid functionalization on the electrical characteristics of carbon nanotube field-effect transistor. Electron. Mater. Lett. 19(5), 405 (2023).

    Article  CAS  ADS  Google Scholar 

  29. J.S. Chen, V. Stolojan, and S.R.P. Silva, Towards type-selective carbon nanotube growth at low substrate temperature via photo-thermal chemical vapour deposition. Carbon 84, 409 (2015).

    Article  CAS  Google Scholar 

  30. M.S. Dresselhaus, G. Dresselhaus, A. Jorio, A.G. Souza Filho, M.A. Pimenta, and R. Saito, Single nanotube Raman spectroscopy. Acc. Chem. Res. 35(12), 1070 (2002).

    Article  CAS  PubMed  Google Scholar 

  31. S. Costa, E. Borowiak-Palen, M. Kruszynska, A. Bachmatiuk, and R.J. Kalenczuk, Characterization of carbon nanotubes by Raman spectroscopy. Mater. Sci. Pol. 26(2), 433 (2008).

    CAS  Google Scholar 

  32. V.W. Brar, G.G. Samsonidze, M.S. Dresselhaus, G. Dresselhaus, R. Saito, A.K. Swan, and A. Jorio, Second-order harmonic and combination modes in graphite, single-wall carbon nanotube bundles, and isolated single-wall carbon nanotubes. Phys. Rev. B 66(15), 155418 (2002).

    Article  ADS  Google Scholar 

  33. C.S. Allen, G. Liu, Y. Chen, A.W. Robertson, K. He, K. Porfyrakis, and J.H. Warner, Optically enhanced charge transfer between C 60 and single-wall carbon nanotubes in hybrid electronic devices. Nanoscale 6(1), 572 (2014).

    Article  CAS  PubMed  ADS  Google Scholar 

  34. E. Fortunato, P. Barquinha, and R. Martins, Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24(22), 2945 (2012).

    Article  CAS  PubMed  Google Scholar 

  35. F. Schwierz, Graphene transistors: status, prospects, and problems. Proc. IEEE 101(7), 1567 (2013).

    Article  CAS  Google Scholar 

  36. İ Karteri, Ş Karataş, and F. Yakuphanoğlu, Electrical characterization of graphene oxide and organic dielectric layers based on thin film transistor. Appl. Surf. Sci. 318, 74 (2014).

    Article  CAS  ADS  Google Scholar 

  37. G. Horowitz and P. Delannoy, An analytical model for organic-based thin-film transistors. J. Appl. Phys. 70(1), 469 (1991).

    Article  CAS  ADS  Google Scholar 

  38. M. Shur, Physics of Semiconductor Devices (Englewood Cliffs: Prentice Hall Inc., 1990), p.680.

    Google Scholar 

  39. M.M. Billah, A.B. Siddik, J.B. Kim, D.K. Yim, S.Y. Choi, J. Liu, and J. Jang, High-performance coplanar dual-channel a-InGaZnO/a-InZnO semiconductor thin-film transistors with high field-effect mobility. Adv. Electron. Mater. 7(3), 2000896 (2021).

    Article  CAS  Google Scholar 

  40. C.T. Xuan, N.T. Thuy, T.T. Luyen, T.T. Huyen, and M.A. Tuan, Carbon nanotube field-effect transistor for DNA sensing. J. Electron. Mater. 46, 3507 (2017).

    Article  CAS  ADS  Google Scholar 

  41. I.G. Baek, M.S. Lee, S. Seo, M.J. Lee, D.H. Seo, D.S. Suh, and J.T. Moon, Highly scalable nonvolatile resistive memory using simple binary oxide driven by asymmetric unipolar voltage pulses. In IEDM Technical Digest. IEEE International Electron Devices Meeting (2004), pp. 587–590.

  42. Z. Wang, H. Xu, Z. Zhang, S. Wang, L. Ding, Q. Zeng, and L.M. Peng, Growth and performance of yttrium oxide as an ideal high-κ gate dielectric for carbon-based electronics. Nano Lett. 10(6), 2024 (2010).

    Article  CAS  PubMed  ADS  Google Scholar 

  43. P. Avouris, Molecular electronics with carbon nanotubes. Acc. Chem. Res. 35(12), 1026 (2002).

    Article  CAS  PubMed  Google Scholar 

  44. A.D. Franklin, D.B. Farmer, and W. Haensch, Defining and overcoming the contact resistance challenge in scaled carbon nanotube transistors. ACS Nano 8(7), 7333 (2014).

    Article  CAS  PubMed  Google Scholar 

  45. P.Y. Gangavarapu, A.M.R. Sharma, K.L. Ganapathi, S. Mohan, and A.K. Naik, Dielectric based charge carrier tuning for CNT CMOS inverters. Semicond. Sci. Technol. 34(1), 015015 (2018).

    Article  ADS  Google Scholar 

  46. M. Toader, S. Hermann, L. Scharfenberg, M. Hartmann, M. Mertig, S.E. Schulz, and T. Gessner, Competitive impact of nanotube assembly and contact electrodes on the performance of cnt-based fets. J. Phys. Chem. C 120(18), 10020 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgments

H. Altuntas and F. Oke-Altuntas gratefully acknowledges TUBITAK BIDEB 2219 Fellowship and Advanced Technology Institute (ATI) for their cooperation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Halit Altuntas or S. R. P. Silva.

Ethics declarations

Conflict of interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altuntas, H., Oke-Altuntas, F. & Silva, S.R.P. The Effect of Low-Temperature Annealing on the Electrical Characteristics of Carbon Nanotube Network Field-Effect Transistors. J. Electron. Mater. 53, 2104–2114 (2024). https://doi.org/10.1007/s11664-023-10912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11664-023-10912-x

Keywords

Navigation