Skip to main content
Log in

Suppression of leakage current in carbon nanotube field-effect transistors

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Carbon nanotube field-effect transistor (CNT FET) has been considered as a promising candidate for future high-performance and low-power integrated circuits (ICs) applications owing to its ballistic transport and excellent immunity to short channel effects (SCEs). Still, it easily suffers from the ambipolar property, and severe leakage current at off-state originated from gate-induced drain leakage (GIDL) in CNT FETs with small bandgap. Although some modifications on device structure have been experimentally demonstrated to suppress the leakage current in CNT FETs, there is still a lack of the structure with excellent scalability, which will hamper the development of CNT FETs toward a competitive technology node. Here, we explore how the device geometry design affects the leakage current in CNT FETs, and then propose the possible device structures to suppress off-state current and check their availability through the two-dimensional (2D) TCAD simulations. Among all the proposed structures, the L-shaped-spacer CNT FET exhibits significantly suppressed leakage current and excellent scalability down to sub-50 nm with a simple self-aligned gate process. According to the simulation results, the 50 nm gate-length L-shaped-spacer CNT FET exhibits an off-state current as low as approximately 1 nA/µm and an on-current as high as about 2.1 mA/µm at a supply voltage of −1 V and then can be extended as a universal device structure to suppress leakage current for all the narrow-bandgap semiconductors based FETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Taur, Y.; Buchanan, D. A.; Chen, W.; Frank, D. J.; Ismail, K. E.; Lo, S. H.; Sai-Halasz, G. A.; Viswanathan, R. G.; Wann, H. J. C.; Wind, S. J. et al. CMOS scaling into the nanometer regime. Proc. IEEE 1997, 85, 486–504.

    Article  Google Scholar 

  2. Antoniadis, D. A.; Aberg, I.; Chleirigh, C. N.; Nayfeh, O. M.; Khakifirooz, A.; Hoyt, J. L. Continuous MOSFET performance increase with device scaling: The role of strain and channel material innovations. IBM J. Res. Dev. 2006, 50, 363–376.

    Article  CAS  Google Scholar 

  3. Lundstrom, M. Moore's law forever? Science 2003, 299, 210–211.

    Article  CAS  Google Scholar 

  4. Thompson, S. E.; Parthasarathy, S. Moore's law: The future of Si microelectronics. Mater. Today 2006, 9, 20–25.

    Article  CAS  Google Scholar 

  5. Yeric, G. Moore's Law at 50: Are we planning for retirement? In Proceedings of 2015 IEEE International Electron Devices Meeting (IEDM), Washington, USA, 2015, pp 1.

  6. Kim, N. S.; Austin, T.; Baauw, D.; Mudge, T.; Flautner, K.; Hu, J. S.; Irwin, M. J.; Kandemir, M.; Narayanan, V. Leakage current: Moore's law meets static power. Computer 2003, 36, 68–75.

    Google Scholar 

  7. Chau, R.; Doyle, B.; Datta, S.; Kavalieros, J.; Zhang, K. Integrated nanoelectronics for the future. Nat. Mater. 2007, 6, 810–812.

    Article  CAS  Google Scholar 

  8. Iwai, H. End of the scaling theory and Moore's law. In Proceedings of the 2016 16th International Workshop on Junction Technology (IWJT), Shanghai, China, 2016, pp 1–4.

  9. Peng, L. M.; Zhang, Z. Y.; Wang, S. Carbon nanotube electronics: Recent advances. Mater. Today 2014, 17, 433–442.

    Article  CAS  Google Scholar 

  10. Zhang, Z. Y.; Wang, S.; Wang, Z. X.; Ding, L.; Pei, T.; Hu, Z. D.; Liang, X. L.; Chen, Q.; Li, Y.; Peng, L. M. Almost perfectly symmetric SWCNT-based CMOS devices and scaling. ACS Nano 2009, 3, 3781–3787.

    Article  CAS  Google Scholar 

  11. Peng, L. M.; Zhang, Z. Y.; Qiu, C. G. Carbon nanotube digital electronics. Nat. Electron. 2019, 2, 499–505.

    Article  CAS  Google Scholar 

  12. Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

    Article  CAS  Google Scholar 

  13. Lee, C. S.; Pop, E.; Franklin, A. D.; Haensch, W.; Wong, H. S. P. A compact virtual-source model for carbon nanotube FETs in the sub-10-nm regime—Part I: Intrinsic elements. IEEE Trans. Electron Dev. 2015, 62, 3061–3069.

    Article  CAS  Google Scholar 

  14. Xu, L.; Qiu, C. G.; Zhao, C. Y.; Zhang, Z. Y.; Peng, L. M. Insight into ballisticity of room-temperature carrier transport in carbon nanotube field-effect transistors. IEEE Trans. Electron Dev. 2019, 66, 3535–3540.

    Article  CAS  Google Scholar 

  15. Franklin, A. D. Nanomaterials in transistors: From high-performance to thin-film applications. Science 2015, 349, aab2750.

    Article  Google Scholar 

  16. Qiu, C. G.; Zhang, Z. Y.; Xiao, M. M.; Yang, Y. J.; Zhong, D. L.; Peng, L. M. Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science 2017, 355, 271–276.

    Article  CAS  Google Scholar 

  17. Zhang, Z. Y.; Wang, S.; Ding, L.; Liang, X. L.; Pei, T.; Shen, J.; Xu, H. L.; Chen, Q.; Cui, R. L.; Li, Y. et al. Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 2008, 8, 3696–3701.

    Article  CAS  Google Scholar 

  18. Zhang, Z. Y.; Liang, X. L.; Wang, S.; Yao, K.; Hu, Y. F.; Zhu, Y. Z.; Chen, Q.; Zhou, W. W.; Li, Y.; Yao, Y. G et al. Doping-free fabrication of carbon nanotube based ballistic CMOS devices and circuits. Nano Lett. 2007, 7, 3603–3607.

    Article  CAS  Google Scholar 

  19. Guo, J.; Datta, S.; Lundstrom, M. A numerical study of scaling issues for Schottky-barrier carbon nanotube transistors. IEEE Trans. Electron Dev. 2004, 51, 172–177.

    Article  CAS  Google Scholar 

  20. Heinze, S.; Tersoff, J.; Martel, R.; Derycke, V.; Appenzeller, J.; Avouris, P. Carbon nanotubes as schottky barrier transistors. Phys. Rev. Lett. 2002, 89, 106801.

    Article  CAS  Google Scholar 

  21. Larson, J. M.; Snyder, J. P. Overview and status of metal s/d Schottky-barrier MOSFET technology. IEEE Trans. Electron Dev. 2006, 53, 1048–1058.

    Article  CAS  Google Scholar 

  22. Knoch, J.; Zhang, M.; Appenzeller, J.; Mantl, S. Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl. Phys. A 2007, 87, 351–357.

    Article  CAS  Google Scholar 

  23. Ghoneim, H.; Knoch, J.; Riel, H.; Webb, D.; Björk, M. T.; Karg, S.; Lörtscher, E.; Schmid, H.; Riess, W. Suppression of ambipolar behavior in metallic source/drain metal-oxide-semiconductor field-effect transistors. Appl. Phys. Lett. 2009, 95, 213504.

    Article  Google Scholar 

  24. Qiu, C. G.; Zhang, Z. Y.; Zhong, D. L.; Si, J.; Yang, Y. J.; Peng, L. M. Carbon nanotube feedback-gate field-effect transistor: Suppressing current leakage and increasing on/off ratio. ACS Nano 2015, 9, 969–977.

    Article  CAS  Google Scholar 

  25. Srimani, T.; Hills, G.; Zhao, X.; Antoniadis, D.; del Alamo, J. A.; Shulaker, M. M. Asymmetric gating for reducing leakage current in carbon nanotube field-effect transistors. Appl. Phys. Lett. 2019, 115, 063107.

    Article  Google Scholar 

  26. Lin, Y. M.; Appenzeller, J.; Avouris, P. Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett. 2004, 4, 947–950.

    Article  CAS  Google Scholar 

  27. Pourfath, M.; Ungersboeck, E.; Gehring, A.; Cheong, B. H.; Park, W.; Kosina, H.; Selberherr, S. Improving the ambipolar behavior of Schottky barrier carbon nanotube field effect transistors. In Proceedings of the 30th European Solid-State Circuits Conference, Leuven, Belgium, 2004, pp 429–432.

  28. Caughey, D. M.; Thomas, R. E. Carrier mobilities in silicon empirically related to doping and field. Proc. IEEE 1967, 55, 2192–2193.

    Article  Google Scholar 

  29. Nanmeni Bondja, C.; Geng, Z. S.; Granzner, R.; Pezoldt, J.; Schwierz, F. Simulation of 50-nm gate graphene nanoribbon transistors. Electronics 2016, 5, 3.

    Article  Google Scholar 

  30. Betti, A.; Fiori, G.; Iannaccone, G. Drift velocity peak and negative differential mobility in high field transport in graphene nanoribbons explained by numerical simulations. Appl. Phys. Lett. 2011, 99, 242108.

    Article  Google Scholar 

  31. Akinwande, D.; Nishi, Y.; Wong, H. S. P. An analytical derivation of the density of states, effective mass, and carrier density for achiral carbon nanotubes. IEEE Trans. Electron Dev. 2008, 55, 289–297.

    Article  CAS  Google Scholar 

  32. Liang, J. L.; Akinwande, D.; Wong, H. S. P. Carrier density and quantum capacitance for semiconducting carbon nanotubes. J. Appl. Phys. 2008, 104, 064515.

    Article  Google Scholar 

  33. Wong, H. S. P.; Akinwande, D. Carbon Nanotube and Graphene Device Physics; Cambridge University Press: Cambridge, 2011.

    Google Scholar 

  34. Trivedi, V. P.; Fossum, J. G. Nanoscale FD/SOI CMOS: Thick or thin BOX? IEEE Electron Dev. Lett. 2005, 26, 26–28.

    Article  CAS  Google Scholar 

  35. Ernst, T.; Tinella, C.; Raynaud, C.; Cristoloveanu, S. Fringing fields in sub-0.1 µm fully depleted SOI MOSFETs: Optimization of the device architecture. Solid-State Electron. 2002, 46, 373–378.

    Article  CAS  Google Scholar 

  36. Li, J.; Bansal, A.; Roy, K. Poly-Si thin-film transistors: An efficient and low-cost option for digital operation. IEEE Trans. Electron Dev. 2007, 54, 2918–2929.

    Article  CAS  Google Scholar 

  37. Sahay, S.; Kumar, M. J. Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans. Electron Dev. 2015, 62, 3882–3886.

    Article  Google Scholar 

  38. Chau, R.; Datta, S.; Doczy, M.; Doyle, B.; Jin, B.; Kavalieros, J.; Majumdar, A.; Metz, M.; Radosavljevic, M. Benchmarking nano-technology for high-performance and low-power logic transistor applications. IEEE Trans. Nanotechnol. 2005, 4, 153–158.

    Article  Google Scholar 

  39. Cao, Q.; Han, S. J.; Penumatcha, A. V.; Frank, M. M.; Tulevski, G. S.; Tersoff, J.; Haensch, W. E. Origins and characteristics of the threshold voltage variability of quasiballistic single-walled carbon nanotube field-effect transistors. ACS Nano 2015, 9, 1936–1944.

    Article  CAS  Google Scholar 

  40. Augendre, E.; Rooyackers, R.; de Potter de ten Broeck, M.; Kunnen, E.; Beckx, S.; Mannaert, G.; Vrancken, C.; Vassilev, V.; Chiarella, T.; Jurczak, M. et al. Thin L-shaped spacers for CMOS devices. In Proceedings of the 33rd Conference on European Solid-State Device Research, Estoril, Portugal, 2003, pp 219–222.

  41. Ancona, M. G. Electron transport in graphene from a diffusion-drift perspective. IEEE Trans. Electron Dev. 2010, 57, 681–689.

    Article  CAS  Google Scholar 

  42. Cristoloveanu, S.; Wan, J.; Zaslavsky, A. A review of sharp-switching devices for ultra-low power applications. IEEE J. Electron Dev. Soc. 2016, 4, 215–226.

    Article  CAS  Google Scholar 

  43. Qiu, C. G.; Liu, F.; Xu, L.; Deng, B.; Xiao, M. M.; Si, J.; Lin, L.; Zhang, Z. Y.; Wang, J.; Guo, H. et al. Dirac-source field-effect transistors as energy-efficient, high-performance electronic switches. Science 2018, 361, 387–392.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research & Development Program (No. 2016YFA0201901), the National Natural Science Foundation of China (No. 61888102), and the Beijing Municipal Science and Technology Commission (No. D171100006617002 1–2).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lian-mao Peng or Zhiyong Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, L., Qiu, C., Peng, Lm. et al. Suppression of leakage current in carbon nanotube field-effect transistors. Nano Res. 14, 976–981 (2021). https://doi.org/10.1007/s12274-020-3135-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-020-3135-8

Keywords

Navigation