Skip to main content

Advertisement

Log in

Possibility of Silicon Nanocages as Anode Electrodes in Metal-Ion Batteries: Computational Examination

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Potential of silicon nanocages (Sin, n = 20, 24, 28, 32, 36, 40, 44, 48, 60, 70, 80 and 90) as anodes in batteries are examined. The thermal stability, ionization potentials, electron affinities, bond gap energies of Sin structures are investigated. Results shown when the numbers of Si atoms of nanocages are increased the IP, EGap and EA of Sin are decreased. The cell voltage and capacities of 12 silicon structures are investigated. The Vcell and CTheory of Sin in batteries in four sides of nanocage positions are higher than inner and outer positions. The Vcell of Sin structures in Li-ion batteries are 1.82–2.20 V and the CTheory of Sin structures in Li-IBs are 653.0–799.2 mAh/g. The Vcell and CTheory of Sin structures in this study are higher than Vcell and CTheory of graphite compounds, carbon nano structures and boron nitride nanotubes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of Data and Material

Not applicable.

Code Availability

Not applicable.

References

  1. Scrosati B (2011) J Solid State Electrochem 15:23–30

    Article  Google Scholar 

  2. Xu K (2004) Chem Rev 104:4303–4418

    Article  CAS  PubMed  Google Scholar 

  3. Imanishi N (2018) Solid State Ionics 58:333–338

    Article  Google Scholar 

  4. HWang, Phys. Chem. 2017, 2, 52–80.

  5. Zaman N (2021) RSC Adv 11:904–925

    Article  Google Scholar 

  6. Huang G (2014) Nanoscale 6:5509–5515

    Article  CAS  PubMed  Google Scholar 

  7. K. Pradeeswari, A. Venkatesan, P. Pandi, K. Guru Prasad, K. Karthik, T. Maiyalagan, R. Mohan Kumar, Ionic 2020, 26, 905–912.

  8. Radhika D, Kannan K, Neseraj AS, Namitha R (2020) Mater Res Innov 24:395–401

    Article  CAS  Google Scholar 

  9. K. Pradeeswari, A. Venkatesan, P. Pandi, K. Karthik, K.V. Hari Krishna, R. Mohan Kumar, Mater. Res. Express 20196, 105525.

  10. Qin N, Appl ACS (2021) Mater Interfaces 13:12463–12471

    Article  CAS  Google Scholar 

  11. George P (2018) J Mater Sci 53:11694–11714

    Article  CAS  Google Scholar 

  12. Li H (2017) Nanoscale 9:7454–7463

    Article  CAS  PubMed  Google Scholar 

  13. Zhang Z (2014) J Am Chem Soc 136:16112–16115

    Article  CAS  PubMed  Google Scholar 

  14. Nagatomi H (2018) Chem Eur J 24:1806–1810

    Article  CAS  PubMed  Google Scholar 

  15. Zhou K (2017) Chem Eng J 316:137–145

    Article  CAS  Google Scholar 

  16. Zhou X, Appl ACS (2017) Mater Interfaces 9:1430914318

    Google Scholar 

  17. Guo Q (2013) J Power Sources 240:149–154

    Article  CAS  Google Scholar 

  18. Yang R (2020) J. Alloys Compd. 816:152519

    Article  CAS  Google Scholar 

  19. Liu X, Wang Y, Liu Z, Zhang Q, Li S (2021) Dalton Trans 50:13476–13482

    Article  CAS  PubMed  Google Scholar 

  20. Liu X, Lin N, Cai W, Zhu Y, Qian Y (2018) Dalton Trans 47:7402–7406

    Article  CAS  PubMed  Google Scholar 

  21. Calandra P (2010) Int. J. Photoenergy 2010:109495

    Article  Google Scholar 

  22. Kirchon A (2018) Chem Soc Rev 47:8611–8638

    Article  CAS  PubMed  Google Scholar 

  23. Shen L (2017) Electrochim Acta 235:595–603

    Article  CAS  Google Scholar 

  24. Zhang Y (2009) Int J Hydrogen Energy 34:4889–4899

    Article  CAS  Google Scholar 

  25. Zhang K (2019) Nat Commun 10:1–12

    Article  Google Scholar 

  26. Chen J (2017) Inorg Chem Commun 84:241–245

    Article  CAS  Google Scholar 

  27. Chen Y, Sang M, Jiang W, Wang Y, Zou Y, Lu C, Ma Z (2021) Eng Fract Mech 253:107866

    Article  Google Scholar 

  28. Zhang X, Tang Y, Zhang F, Lee C (2016) Adv Energy Mater 6:1502588

    Article  Google Scholar 

  29. Wang M, Jiang C, Zhang S, Song X, Tang Y, Cheng H (2018) Nat Chem 10:667–672

    Article  CAS  PubMed  Google Scholar 

  30. Mu S, Liu Q, Kidkhunthod P, Zhou X, Wang W, Tang Y (2020) Natl Sci Rev 8:nwaa178

    Article  PubMed  PubMed Central  Google Scholar 

  31. Zhang J, Zhao Y, Liu Y, Zhu C, Wang B, Zhang L, Zhang X (2022) J. Alloys Compd. 902:163723

    Article  CAS  Google Scholar 

  32. He J, Liu X, Zhao Y, Du H, Zhang T, Shi J (2022). ACS Appl Electron Mater. https://doi.org/10.1021/acsaelm.1c01129

    Article  Google Scholar 

  33. Zhang R, Zhang W, Shi M, Li H, Ma L, Niu H (2021) Dyes Pigm. 199:109968

    Article  Google Scholar 

  34. Zhang Z, Feng L, Liu H, Wang L, Wang S, Tang Z (2021) Inorg Chem Front 9:35–43

    Article  Google Scholar 

  35. Hu Z, Zhang L, Huang J, Feng Z, Xiong Q, Ye Z, Yu Z (2021) Nanoscale 13:8264–8274

    Article  CAS  PubMed  Google Scholar 

  36. Xiong Q, Chen Z, Huang J, Zhang M, Song H, Hou X, Feng Z (2020) Rare Met 39:589–596

    Article  CAS  Google Scholar 

  37. Yan W, Liang K, Chi Z, Liu T, Cao M, Fan S, Su J (2021) Electrochim. Acta 376:138035

    Article  CAS  Google Scholar 

  38. Huang C, Dong J, Zhang Y, Chai S, Wang X, Kang S, Jiang Q (2021) Materials Design 212:110240

    Article  CAS  Google Scholar 

  39. Hu Y, Yan B, Chen ZS, Wang L, Tang W, Huang CJ (2021) Renew Mater 10:1471–1490

    Article  Google Scholar 

  40. Huang C, Jiang X, Shen X, Hu J, Tang W, Wu X, Yong Q (2022) Renew. Sust. Energ. Rev. 154:111822

    Article  CAS  Google Scholar 

  41. Lin W, Yang J, Zheng Y, Huang C, Yong Q (2021) Biotechnol Biofuels 14:1–15

    Article  Google Scholar 

  42. Andalib V, Sarkar J (2021) JSTA 20:180–192

    Article  Google Scholar 

  43. Latif M, Zhang D, Gamez G (2021) Analytica Chimica Acta 1163:338507

    Article  CAS  PubMed  Google Scholar 

  44. Zhang D, Latif M, Gamez G (2021) Anal Chem 93:9986–9994

    Article  CAS  PubMed  Google Scholar 

  45. Mikhailov OV, Chachkov DV (2020) Eur Chem Bull 9:62–68

    Article  CAS  Google Scholar 

  46. Chachkov DV, Mikhailov OV (2020) Eur Chem Bull 9:313–316

    Article  CAS  Google Scholar 

  47. Chachkov DV, Mikhailov OV (2020) Eur Chem Bull 9:329–334

    Article  CAS  Google Scholar 

  48. Mikhailov OV, Chachkov DV (2020) Eur Chem Bull 9:416–419

    Article  CAS  Google Scholar 

  49. Mikhailov O, Chachkov D (2020) Eur Chem Bull 9:160–163

    Article  CAS  Google Scholar 

  50. Bakhtadze, V. Mosidze, V. Machaladze, T. Kharabadze, N. Lochoshvili, D. Pajishvili, M.

  51. Mdivani N (2020) Eur Chem Bull 9:75–77

    Article  Google Scholar 

  52. Miraoui A, Didi MA (2020) Eur Chem Bull 9:138–147

    Article  CAS  Google Scholar 

  53. Gözükızıl MF (2020) Eur Chem Bull 9:335–338

    Article  Google Scholar 

  54. Chupradit, S. Jalil, A. T. Enina, Y. Neganov, D. A. Alhassan, M. S. Aravindhan, S. Davarpanah, A. J. Nanomater. 2021, 3250058.

  55. Zeng K, Hachem K, Kuznetsova M, Chupradit S, Su CH, Nguyen HC (2021) El-Shafay, A. S. J. Mol. Liq. 347:118290

    Article  Google Scholar 

  56. Yang, S. Jasim, S. A. Bokov, D. Chupradit, S. Nakhjiri, A. T. El-Shafay, A. S. J. Mol. Liq. 2021, 118115, https://doi.org/10.1016/j.molliq.2021.118115.

  57. Qaderi J (2020) Int J Sci Innov Res Stud 3:33–40

    Google Scholar 

  58. Peng WX, Wang LS, Mirzaee M, Ahmadi H, Esfahani MJ, Fremaux S (2017) Energy Convers Manag 135:270–273

    Article  CAS  Google Scholar 

  59. Peng WX, Ge SB, Ebadi AG, Hisoriev H, Esfahani MJ (2017) J Clean Prod 168:1513–1517

    Article  CAS  Google Scholar 

  60. Kianfar E, Salimi M, Kianfar F (2019) Macromol Res 27:83–89

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank our research group for their helps.

Funding

Not applicable.

Author information

Authors and Affiliations

Authors

Contributions

Saade Abdalkareem Jasim (Conceptualization, Formal analysis), Yassine Riadi (Funding acquisition, Methodology), Nusrat N. Akhmadaliev (Project administration, Resources, Software), Himanshu Sharma (Supervision, Validation, Visualization), Holya A. Lafta (Writing – original draft, Investigation, Data curation), Jinlian Qiao (writing, obtain data, software).

Corresponding author

Correspondence to Jinlian Qiao.

Ethics declarations

Ethical Approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.

Consent to Participate

I confirmed.

Consent for Publication

I confirmed.

Conflicts of Interest

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jasim, S.A., Riadi, Y., Akhmadaliev, N.N. et al. Possibility of Silicon Nanocages as Anode Electrodes in Metal-Ion Batteries: Computational Examination. Silicon 14, 10225–10235 (2022). https://doi.org/10.1007/s12633-022-01761-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01761-0

Keywords

Navigation