Skip to main content

Advertisement

Log in

Influence of cation doping (Li+, Na+, K+) on photocatalytic activity of MIL-53(Fe)

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The work highlights the influence of cation doping on photocatalytic activity of MIL-53(Fe) in artificial light. The effect of intrinsic factors, viz. band-gap energy, electron conductivity and surface area, influencing photocatalysis was studied in detail w.r.t. the degradation of brilliant green dye both in the presence and in the absence of H2O2 as an electron scavenger. Reduction in band gap after cation doping was observed for Li+ (1.81 eV), Na+ (1.875 eV) and K+ (1.89 eV) when compared with the parent MIL-53(Fe) (1.95 eV). However, the photoactivity of the synthesized materials was in the following progression: MIL-53(Fe)(81.6%) > Li-MIL-53(Fe)(27.6%) > Na-MIL-53(Fe)(25.77%) > K-MIL-53(Fe) (24.18%). Effect of structural distortions in the octahedral backbone of MIL-53(Fe) due to cation doping was inferred as the plausible reason behind such behavior. The degree of electron delocalization and specific surface areas were found to be in the following progression: Na-MIL-53(Fe) (very low, 7.72 m2 g−1) < K-MIL-53(Fe) (low, 28.38 m2 g−1) < Li-MIL-53(Fe) (moderate, 42.14 m2 g−1) < MIL-53(Fe) (high, 51.71 m2 g−1), indicating that the intrinsic material properties have combinatorial influence on photocatalytic activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357. https://doi.org/10.1021/cr00017a016

    Article  CAS  Google Scholar 

  2. Ibhadon A, Fitzpatrick P (2013) Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218. https://doi.org/10.3390/catal3010189

    Article  CAS  Google Scholar 

  3. Sahaym U, Norton MG (2008) Advances in the application of nanotechnology in enabling a ‘hydrogen economy’. J Mater Sci 43:5395–5429. https://doi.org/10.1007/s10853-008-2749-0

    Article  CAS  Google Scholar 

  4. Li J, Sculley J, Zhou H (2012) Metal–organic frameworks for separations. Chem Rev 112:869–932. https://doi.org/10.1021/cr200190s

    Article  CAS  Google Scholar 

  5. Tan K, Nijem N, Canepa P, Gong Q, Li J, Thonhauser T, Chabal YJ (2012) Stability and hydrolyzation of metal organic frameworks with paddle-wheel SBUs upon hydration. Chem Mater 24:3153–3167. https://doi.org/10.1021/cm301427w

    Article  CAS  Google Scholar 

  6. Ai L, Li L, Zhang C, Fu J, Jiang J (2013) MIL-53(Fe): a metal–organic framework with intrinsic peroxidase-like catalytic activity for colorimetric biosensing. Chem Eur J 19:15105–15108. https://doi.org/10.1002/chem.201303051

    Article  CAS  Google Scholar 

  7. Burtch NC, Jasuja H, Walton KS (2014) Water stability and adsorption in metal–organic frameworks. Chem Rev 114:10575–10612. https://doi.org/10.1021/cr5002589

    Article  CAS  Google Scholar 

  8. Dias EM, Petit C (2015) Towards the use of metal–organic frameworks for water reuse: a review of the recent advances in the field of organic pollutants removal and degradation and the next steps in the field. J Mater Chem A 3:22484–22506. https://doi.org/10.1039/C5TA05440K

    Article  CAS  Google Scholar 

  9. Xiao X, Tu S, Lu M, Zhong H, Zheng C, Zuo X, Nan J (2016) Discussion on the reaction mechanism of the photocatalytic degradation of organic contaminants from a viewpoint of semiconductor photo-induced electrocatalysis. Appl Catal B Environ 198:124–132. https://doi.org/10.1016/j.apcatb.2016.05.042

    Article  CAS  Google Scholar 

  10. Liu K, Gao Y, Liu J, Wen Y, Zhao Y, Zhang K, Yu G (2016) Photoreactivity of metal–organic frameworks in aqueous solutions: metal dependence of reactive oxygen species production. Environ Sci Technol 50:3634–3640. https://doi.org/10.1021/acs.est.5b06019

    Article  CAS  Google Scholar 

  11. Misho RH, Murad WA (1992) Band gap measurements in thin films of hematite Fe2O3, pyrite FeS2 and troilite FeS prepared by chemical spray pyrolysis. Sol Energy Mater Sol Cells 27:335–345. https://doi.org/10.1016/0927-0248(92)90095-7

    Article  CAS  Google Scholar 

  12. Du J-J, Yuan Y-P, Sun J-X, Peng F-M, Jiang X, Qiu L-G, Xie A-J, Shen Y-H, Zhu J-F (2011) New photocatalysts based on MIL-53 metal–organic frameworks for the decolorization of methylene blue dye. J Hazard Mater 190:945–951. https://doi.org/10.1016/j.jhazmat.2011.04.029

    Article  CAS  Google Scholar 

  13. Mahata P, Madras G, Natarajan S (2006) Novel photocatalysts for the decomposition of organic dyes based on metal–organic-framework compounds. J Phys Chem B 110:13759–13768. https://doi.org/10.1021/jp0622381

    Article  CAS  Google Scholar 

  14. Ai L, Zhang C, Li L, Jiang J (2014) Iron terephthalate metal–organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B Environ 148–149:191–200. https://doi.org/10.1016/j.apcatb.2013.10.056

    Article  CAS  Google Scholar 

  15. Gao Y, Li S, Li Y, Yao L, Zhang H (2017) Accelerated photocatalytic degradation of organic pollutant over metal–organic framework MIL-53(Fe) under visible LED light mediated by persulfate. Appl Catal B Environ 202:165–174. https://doi.org/10.1016/j.apcatb.2016.09.005

    Article  CAS  Google Scholar 

  16. Mohaghegh N, Kamrani S, Tasviri M et al (2015) Nanoporous Ag2O photocatalysts based on copper terephthalate metal–organic frameworks. J Mater Sci 50:4536–4546. https://doi.org/10.1007/s10853-015-9003-3

    Article  CAS  Google Scholar 

  17. Liang R, Jing F, Shen L, Qin N, Wu L (2015) MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J Hazard Mater 287:364–372. https://doi.org/10.1016/j.jhazmat.2015.01.048

    Article  CAS  Google Scholar 

  18. Wang C, Du X, Li J, Guo X, Wang P, Zhang J (2016) Applied catalysis B: environmental photocatalytic Cr(VI) reduction in metal–organic frameworks. Appl Catal B Environ 193:198–216. https://doi.org/10.1016/j.apcatb.2016.04.030

    Article  CAS  Google Scholar 

  19. Dhakshinamoorthy A, Asiri AM, García H (2016) Metal–organic framework (MOF) compounds: photocatalysts for redox reactions and solar fuel production. Angew Chem Int Ed 55:5414–5445. https://doi.org/10.1002/anie.201505581

    Article  CAS  Google Scholar 

  20. Whitfield TR, Wang X, Liu L, Jacobson AJ (2005) Metal–organic frameworks based on iron oxide octahedral chains connected by benzenedicarboxylate dianions. Solid State Sci 7:1096–1103. https://doi.org/10.1016/j.solidstatesciences.2005.03.007

    Article  CAS  Google Scholar 

  21. Lin C-K, Zhao D, Gao W-Y, Yang Z, Ye J, Xu T, Ge Q, Ma S, Liu D-J (2012) Tunability of band gaps in metal-organic frameworks. Inorg Chem 51:9039–9044. https://doi.org/10.1021/ic301189m

    Article  CAS  Google Scholar 

  22. Samsudin EM, Abd Hamid SB (2017) Effect of band gap engineering in anionic-doped TiO2 photocatalyst. Appl Surf Sci 391:326–336. https://doi.org/10.1016/j.apsusc.2016.07.007

    Article  CAS  Google Scholar 

  23. Shen L, Liang R, Wu L (2015) Strategies for engineering metal–organic frameworks as efficient photocatalysts, Cuihua Xuebao/Chinese. J Catal 36:2071–2088. https://doi.org/10.1016/S1872-2067(15)60984-6

    Article  CAS  Google Scholar 

  24. Shin E, Jin S, Kim J, Chang SJ, Jun BH, Park KW, Hong J (2016) Preparation of K-doped TiO2 nanostructures by wet corrosion and their sunlight-driven photocatalytic performance. Appl Surf Sci 379:33–38. https://doi.org/10.1016/j.apsusc.2016.03.222

    Article  CAS  Google Scholar 

  25. Hamden Z, Boufi S, Conceição DS, Ferraria AM, Do Rego AMB, Ferreira DP, Ferreira LFV, Bouattour S (2014) Li–N doped and codoped TiO2 thin films deposited by dip-coating: characterization and photocatalytic activity under halogen lamp. Appl Surf Sci 314:910–918. https://doi.org/10.1016/j.apsusc.2014.06.176

    Article  CAS  Google Scholar 

  26. Liu R, Zhou X, Yang F, Yu Y (2014) Combination study of DFT calculation and experiment forphotocatalytic properties of S-doped anatase TiO2. Appl Surf Sci 319:50–59. https://doi.org/10.1016/j.apsusc.2014.07.132

    Article  CAS  Google Scholar 

  27. Hu L, Deng G, Lu W, Pang S, Hu X (2017) Deposition of CdS nanoparticles on MIL-53(Fe) metal–organic framework with enhanced photocatalytic degradation of RhB under visible light irradiation. Appl Surf Sci 410:401–413. https://doi.org/10.1016/j.apsusc.2017.03.140

    Article  CAS  Google Scholar 

  28. Serpone N (2006) Is the band gap of pristine TiO2 narrowed by anion- and cation-doping of titanium dioxide in second-generation photocatalysts? J Phys Chem B 110:24287–24293. https://doi.org/10.1021/jp065659r

    Article  CAS  Google Scholar 

  29. Tosoni S, Di Valentin C, Pacchioni G (2014) Effect of alkali metals interstitial doping on structural and electronic properties of WO3. J Phys Chem C 118:3000–3006. https://doi.org/10.1021/jp4123387

    Article  CAS  Google Scholar 

  30. Kato H, Kudo A (2001) Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A=Li, Na, and K). J Phys Chem B 105:4285–4292. https://doi.org/10.1021/jp004386b

    Article  CAS  Google Scholar 

  31. Blasse G, Brixner LH (1989) Luminescence of perovskite-like niobates and tantalates. Mater Res Bull 24:363–366. https://doi.org/10.1016/0025-5408(89)90222-5

    Article  Google Scholar 

  32. Blasse G, De Haart LGJ (1986) The nature of the luminescence of niobates MNbO3 (M=Li, Na, K). Mater Chem Phys 14:481–484. https://doi.org/10.1016/0254-0584(86)90050-7

    Article  CAS  Google Scholar 

  33. Zhang C, Ai L, Jiang J (2015) Graphene hybridized photoactive iron terephthalate with enhanced photocatalytic activity for the degradation of rhodamine B under visible light. Ind Eng Chem Res 54:153–163. https://doi.org/10.1021/ie504111y

    Article  CAS  Google Scholar 

  34. Zhang Y, Li G, Lu H, Lv Q, Sun Z (2014) Synthesis, characterization and photocatalytic properties of MIL-53(Fe)–graphene hybrid materials. RSC Adv 4:7594–7600. https://doi.org/10.1039/c3ra46706f

    Article  CAS  Google Scholar 

  35. Férey G, Millange F, Morcrette M, Serre C, Doublet ML, Grenèche JM, Tarascon JM (2007) Mixed-valence Li/Fe-based metal–organic frameworks with both reversible redox and sorption properties. Angew Chemie Int Ed 46:3259–3263. https://doi.org/10.1002/anie.200605163

    Article  CAS  Google Scholar 

  36. de Combarieu G, Hamelet S, Millange F, Morcrette M, Tarascon JM, Férey G, Walton RI (2009) In situ Fe XAFS of reversible lithium insertion in a flexible metal organic framework material. Electrochem Commun 11:1881–1884. https://doi.org/10.1016/j.elecom.2009.08.008

    Article  CAS  Google Scholar 

  37. Combelles C, Ben Yahia M, Pedesseau L, Doublet M-L (2011) FeII/FeIII mixed-valence state induced by Li-insertion into the metal–organic-framework Mil53(Fe): a DFT + U study. J Power Sources 196:3426–3432. https://doi.org/10.1016/j.jpowsour.2010.08.065

    Article  CAS  Google Scholar 

  38. Chaudhari NK, Chan Kim H, Son D, Yu J-S (2009) Easy synthesis and characterization of single-crystalline hexagonal prism-shaped hematite α-Fe2O3 in aqueous media. CrystEngComm 11:2264–2267. https://doi.org/10.1039/b910569g

    Article  CAS  Google Scholar 

  39. Dong W, Liu X, Shi W, Huang Y (2015) Metal–organic framework MIL-53(Fe): facile microwave-assisted synthesis and use as a highly active peroxidase mimetic for glucose biosensing. RSC Adv 5:17451–17457. https://doi.org/10.1039/C4RA15840G

    Article  CAS  Google Scholar 

  40. Yılmaz E, Sert E, Atalay FS (2016) Synthesis, characterization of a metal organic framework: MIL-53 (Fe) and adsorption mechanisms of methyl red onto MIL-53 (Fe). J Taiwan Inst Chem Eng 65:323–330. https://doi.org/10.1016/j.jtice.2016.05.028

    Article  CAS  Google Scholar 

  41. Pu M, Ma Y, Wan J, Wang Y, Wang J, Brusseau ML (2017) Activation performance and mechanism of a novel heterogeneous persulfate catalyst: metal–organic framework MIL-53(Fe) with Fe II/Fe III mixed-valence coordinatively unsaturated iron center. Catal Sci Technol 7:1129–1140. https://doi.org/10.1039/C6CY02355J

    Article  CAS  Google Scholar 

  42. Liang R, Shen L, Jing F, Qin N, Wu L (2015) Preparation of MIL-53(Fe)-reduced graphene oxide nanocomposites by a simple self-assembly strategy for increasing interfacial contact: efficient visible-light photocatalysts. ACS Appl Mater Interfaces 7:9507–9515. https://doi.org/10.1021/acsami.5b00682

    Article  CAS  Google Scholar 

  43. Sherman DM, Waite TD (1985) Electronic spectra of Fe3+ oxides and oxide hydroxides in the near IR to near UV. Am Mineral 70:1262–1269

    CAS  Google Scholar 

  44. Taran MN, Dyar MD, Matsyuk SS (2007) Optical absorption study of natural garnets of almandine-skiagite composition showing intervalence Fe2+ + Fe3+ → Fe3+ + Fe2+ charge-transfer transition. Am Mineral 92:753–760. https://doi.org/10.2138/am.2007.2163

    Article  CAS  Google Scholar 

  45. Yang Z, Xu X, Liang X, Lei C, Wei Y, He P, Lv B, Ma H, Lei Z (2016) MIL-53(Fe)-graphene nanocomposites: efficient visible-light photocatalysts for the selective oxidation of alcohols. Appl Catal B Environ 198:112–123. https://doi.org/10.1016/j.apcatb.2016.05.041

    Article  CAS  Google Scholar 

  46. Bingham PA, Parker JM, Searle TM, Smith I (2007) Local structure and medium range ordering of tetrahedrally coordinated Fe3+ ions in alkali-alkaline earth-silica glasses. J Non-Cryst Solids 353:2479–2494. https://doi.org/10.1016/j.jnoncrysol.2007.03.017

    Article  CAS  Google Scholar 

  47. Carl R, Gerlach S, Rüssel C (2007) The effect of composition on UV–vis–NIR spectra of iron doped glasses in the systems Na2O/MgO/SiO2 and Na2O/MgO/Al2O3/SiO2. J Non-Cryst Solids 353:244–249. https://doi.org/10.1016/j.jnoncrysol.2006.11.010

    Article  CAS  Google Scholar 

  48. Brunschwig BS, Creutz C, Sutin N (2002) Optical transitions of symmetrical mixed-valence systems in the Class II–III transition regime. Chem Soc Rev 31:168–184. https://doi.org/10.1039/b008034i

    Article  CAS  Google Scholar 

  49. Kobayashi H, Higuchi T, Kaizu Y, Osada H, Aoki M (1975) Electronic spectra of tetraphenylporphinatoiron (III) methoxide. Bull Chem Soc Jpn 48:3137–3141. http://www.journal.csj.jp.libproxy1.nus.edu.sg/doi/pdf/10.1246/bcsj.48.3137

  50. Cannon RD, Montri L, Brown DB, Marshall KM, Elliottm CM (1984) Partial electron delocalization in a mixed-valence trinuclear iron (III)-iron (II) complex. J Am Chem Soc 307:2591–2594

    Article  Google Scholar 

  51. Wang F, Liao Q, Xiang G, Pan S (2014) Thermal properties and FTIR spectra of K2O/Na2O iron borophosphate glasses. J Mol Struct 1060:176–181. https://doi.org/10.1016/j.molstruc.2013.12.049

    Article  CAS  Google Scholar 

  52. Hanna L, Kucheryavy P, Liu C, Zhang X, Lockard JV (2017) Long-lived photoinduced charge separation in a trinuclear iron- µ3 -oxo-based metal–organic framework. J Phys Chem C 121:13570–13576. https://doi.org/10.1021/acs.jpcc.7b03936

    Article  CAS  Google Scholar 

  53. Parthey M, Kaupp M (2014) Quantum-chemical insights into mixed-valence systems: within and beyond the Robin-Day scheme. Chem Soc Rev 43:5067–5088. https://doi.org/10.1039/c3cs60481k

    Article  CAS  Google Scholar 

  54. Anpo M, Che M (1999) Applications of photoluminescence techniques to the characterization of solid surfaces in relation to adsorption, catalysis, and photocatalysis. In: Adv. Catal., pp 119–257. https://doi.org/10.1016/s0360-0564(08)60513-1

  55. Cheng H, Wang J, Zhao Y, Han X (2014) Effect of phase composition, morphology, and specific surface area on the photocatalytic activity of TiO2 nanomaterials. RSC Adv 4:47031–47038. https://doi.org/10.1039/C4RA05509H

    Article  CAS  Google Scholar 

  56. Noorjahan M, Durga Kumari V, Subrahmanyam M, Panda L (2005) Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Appl Catal B Environ 57:291–298. https://doi.org/10.1016/j.apcatb.2004.11.006

    Article  CAS  Google Scholar 

  57. Wei X, Wu H, He G, Guan Y (2017) Efficient degradation of phenol using iron-montmorillonite as a Fenton catalyst: importance of visible light irradiation and intermediates. J Hazard Mater 321:408–416. https://doi.org/10.1016/j.jhazmat.2016.09.031

    Article  CAS  Google Scholar 

  58. Wang J-L, Wang C, Lin W (2012) Metal–organic frameworks for light harvesting and photocatalysis. ACS Catal 2:2630–2640. https://doi.org/10.1021/cs3005874

    Article  CAS  Google Scholar 

  59. Maier TM, Boese AD, Sauer J, Wende T, Fagiani M, Asmis KR (2014) The vibrational spectrum of FeO2+ isomers—theoretical benchmark and experiment. J Chem Phys 140:204–315

    Article  Google Scholar 

Download references

Acknowledgement

We gratefully acknowledge the financial support provided by Science and Engineering Research Board (Department of Science and Technology, Govt. of India) (Letter No. SB/FTP/ETA-419/2012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradip Chowdhury.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1327 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

George, P., Chaudhari, K. & Chowdhury, P. Influence of cation doping (Li+, Na+, K+) on photocatalytic activity of MIL-53(Fe). J Mater Sci 53, 11694–11714 (2018). https://doi.org/10.1007/s10853-018-2443-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2443-9

Keywords

Navigation