Skip to main content

Advertisement

Log in

Chemical Functionalities of 3-aminopropyltriethoxy-silane for Surface Modification of Metal Oxide Nanoparticles

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

3-Aminopropyltriethoxysilane (APTES) is one of the most important silicon compounds in chemistry for the synthesis of materials. It has extensively been used as a silanization agent for the chemical modification of metal oxide nanoparticle (MONP) surfaces. The introduction of amine (NH2) enhances their dispersibility and anti-bacterial property. The APTES-MONPs have various direct applications in electrochemical sensors, catalysts and Pickering emulsions. In this review article, exemplary APTES modifications of MONPs for unique biomedical, industrial and scientific applications are highlighted. APTES modification provides a linkage for numerous organic, inorganic, or biochemical attachments that are essential to drug delivery, contaminants removal, catalyst immobilization, and medical imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Liu W-T(2006) Nanoparticles and their biological and environmental applications. J Biosci Bioeng 102:1–7. https://doi.org/10.1263/jbb.102.1

    Article  CAS  PubMed  Google Scholar 

  2. Piccinno F, Gottschalk F, Seeger S, Nowack B (2012) Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. J Nanopart Res 14:1109. https://doi.org/10.1007/s11051-012-1109-9

    Article  Google Scholar 

  3. Oskam G (2006) Metal oxide nanoparticles: synthesis, characterization and application. J Sol-Gel Sci Technol 37:161–164. https://doi.org/10.1007/s10971-005-6621-2

    Article  CAS  Google Scholar 

  4. Keller AA, Adeleye AS, Conway JR et al (2017) Comparative environmental fate and toxicity of copper nanomaterials. NanoImpact 7:28–40. https://doi.org/10.1016/j.impact.2017.05.003

    Article  Google Scholar 

  5. Akhter SMH, Mohammad F, Ahmad S (2019) Terminalia belerica mediated green synthesis of nanoparticles of copper, iron and zinc metal oxides as the alternate antibacterial agents against some common pathogens. BioNanoScience 9:365–372. https://doi.org/10.1007/s12668-019-0601-4

    Article  Google Scholar 

  6. Azam A, Ahmed, Oves et al (2012) Antimicrobial activity of metal oxide nanoparticles against Gram-positive and Gram-negative bacteria: a comparative study. Int J Nanomed 6003. https://doi.org/10.2147/IJN.S35347

  7. Ciucă AG, Grecu CI, Rotărescu P et al (2017) Nanostructures for drug delivery: pharmacokinetic and toxicological aspects. In: Nanostructures for Drug Delivery. Elsevier, Amsterdam, pp 941–957

  8. Chan M-H, Lin H-M(2015) Preparation and identification of multifunctional mesoporous silica nanoparticles for in vitro and in vivo dual-mode imaging, theranostics, and targeted tracking. Biomaterials 46:149–158. https://doi.org/10.1016/j.biomaterials.2014.12.034

    Article  CAS  PubMed  Google Scholar 

  9. Zahedi SS, Larki A, Saghanezhad SJ, Nikpour Y (2021) 1,4-Diazabicyclo [2.2.2] Octane Functionalized Mesoporous Silica SBA-15 (SBA-15@DABCO): a Novel Highly Selective Adsorbent for Selective Separation/Preconcentration of Cr(VI) from Environmental Water Samples. Silicon. https://doi.org/10.1007/s12633-020-00903-6

  10. Vares G, Jallet V, Matsumoto Y et al (2020) Functionalized mesoporous silica nanoparticles for innovative boron-neutron capture therapy of resistant cancers. Nanomed Nanotechnol Biol Med 27:102195. https://doi.org/10.1016/j.nano.2020.102195

    Article  CAS  Google Scholar 

  11. Gupta AK, Gupta M (2005) Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials 26:3995–4021. https://doi.org/10.1016/j.biomaterials.2004.10.012

    Article  CAS  PubMed  Google Scholar 

  12. Sperling RA, Parak WJ (2010) Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philos Trans R Soc A: Math Phys Eng Sci 368:1333–1383. https://doi.org/10.1098/rsta.2009.0273

    Article  CAS  Google Scholar 

  13. Weingart J, Vabbilisetty P, Sun X-L(2013) Membrane mimetic surface functionalization of nanoparticles: Methods and applications. Adv Coll Interface Sci 197–198:68–84. https://doi.org/10.1016/j.cis.2013.04.003

    Article  CAS  Google Scholar 

  14. Thiruppathi R, Mishra S, Ganapathy M et al (2017) Nanoparticle functionalization and its potentials for molecular imaging. Adv Sci 4:1600279. https://doi.org/10.1002/advs.201600279

    Article  CAS  Google Scholar 

  15. Zang P, Liang Y, Hu WW (2015) Improved Hydrolytic Stability and Repeatability: pH sensing with APTES-coated silicon nanowire bio-FETs. IEEE Nanatechnol Mag 9:19–28. https://doi.org/10.1109/MNANO.2015.2472696

    Article  Google Scholar 

  16. Villa S, Riani P, Locardi F, Canepa F (2016) Functionalization of Fe3O4 NPs by silanization: use of amine (APTES) and Thiol (MPTMS) Silanes and their physical characterization. Materials 9:826. https://doi.org/10.3390/ma9100826

    Article  CAS  PubMed Central  Google Scholar 

  17. Zhang L, Lei Q, Luo J et al (2019) Natural halloysites-based janus platelet surfactants for the formation of pickering emulsion and enhanced oil recovery. Sci Rep 9:163. https://doi.org/10.1038/s41598-018-36352-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lopez-Barbosa N, Osma JF (2017) Nanocomposites fabrication by self-assembly method to modify macroscopic properties. J Phys: Conf Ser 786:012003. https://doi.org/10.1088/1742-6596/786/1/012003

  19. Xiao Z, Xu J, Niu Y et al (2019) Effects of surface functional groups on the adhesion of SiO2 Nanospheres to bio-based materials. Nanomaterials 9:1411. https://doi.org/10.3390/nano9101411

    Article  CAS  PubMed Central  Google Scholar 

  20. Croissant JG, Fatieiev Y, Almalik A, Khashab NM (2018) Mesoporous silica and organosilica nanoparticles: physical chemistry, biosafety, delivery strategies, and biomedical applications. Adv Healthcare Mater 7:1700831. https://doi.org/10.1002/adhm.201700831

    Article  CAS  Google Scholar 

  21. Gomes MC, Cunha Â, Trindade T, Tomé JPC (2016) The role of surface functionalization of silica nanoparticles for bioimaging. J Innov Opt Health Sci 09:1630005. https://doi.org/10.1142/S1793545816300056

    Article  CAS  Google Scholar 

  22. Abdelkhaliq A, van der Zande M, Punt A et al (2018) Impact of nanoparticle surface functionalization on the protein corona and cellular adhesion, uptake and transport. J Nanobiotechnol 16:70. https://doi.org/10.1186/s12951-018-0394-6

    Article  CAS  Google Scholar 

  23. Pelaz B, del Pino P, Maffre P et al (2015) Surface functionalization of nanoparticles with polyethylene glycol: effects on protein adsorption and cellular uptake. ACS Nano 9:6996–7008. https://doi.org/10.1021/acsnano.5b01326

    Article  CAS  PubMed  Google Scholar 

  24. Neouze M-A, Schubert U (2008) Surface modification and functionalization of metal and metal oxide nanoparticles by organic ligands. Monatshefte für Chemie - Chem Mon 139:183–195. https://doi.org/10.1007/s00706-007-0775-2

    Article  CAS  Google Scholar 

  25. Heiney PA, Grüneberg K, Fang J et al (2000) Structure and growth of chromophore-functionalized (3-Aminopropyl)triethoxysilane self-assembled on silicon. Langmuir 16. https://doi.org/10.1021/la990557w

  26. Grasset F, Saito N, Li D et al (2003) Surface modification of zinc oxide nanoparticles by aminopropyltriethoxysilane. J Alloy Compd 360:298–311. https://doi.org/10.1016/S0925-8388(03)00371-2

    Article  CAS  Google Scholar 

  27. Jung H-S, Moon D-S, Lee J-K(2012) Quantitative analysis and efficient surface modification of silica nanoparticles. J Nanomater 2012:1–8. https://doi.org/10.1155/2012/593471

    Article  CAS  Google Scholar 

  28. Shafqat SS, Khan AA, Zafar MN et al (2019) Development of amino-functionalized silica nanoparticles for efficient and rapid removal of COD from pre-treated palm oil effluent. J Mater Res Technol 8:385–395. https://doi.org/10.1016/j.jmrt.2018.03.002

    Article  CAS  Google Scholar 

  29. Aditya A, Chattopadhyay S, Gupta N et al (2019) ZnO nanoparticles modified with an amphipathic peptide show improved photoprotection in skin. ACS Appl Mater Interfaces 11:56–72. https://doi.org/10.1021/acsami.8b08431

    Article  CAS  PubMed  Google Scholar 

  30. Rai VR, Agarwal S (2011) Mechanism of self-catalytic atomic layer deposition of silicon dioxide using 3-aminopropyl Triethoxysilane, water, and ozone. Chem Mater 23:2312–2316. https://doi.org/10.1021/cm103052t

    Article  CAS  Google Scholar 

  31. Liu Y, Li Y, Li X-M, He T (2013) Kinetics of (3-Aminopropyl)triethoxylsilane (APTES) silanization of superparamagnetic iron oxide nanoparticles. Langmuir 29:15275–15282. https://doi.org/10.1021/la403269u

    Article  CAS  PubMed  Google Scholar 

  32. Naguib HM, Ahmed MA, Abo-Shanab ZL (2018) Silane coupling agent for enhanced epoxy-iron oxide nanocomposite. J Mater Res Technol 7:21–28. https://doi.org/10.1016/j.jmrt.2017.03.002

    Article  CAS  Google Scholar 

  33. Vandenberg ET, Bertilsson L, Liedberg B et al (1991) Structure of 3-aminopropyl triethoxy silane on silicon oxide. J Colloid Interface Sci 147:103–118. https://doi.org/10.1016/0021-9797(91)90139-Y

    Article  CAS  Google Scholar 

  34. Bruce IJ, Sen T (2005) Surface modification of magnetic nanoparticles with Alkoxysilanes and their application in magnetic Bioseparations. Langmuir 21:7029–7035. https://doi.org/10.1021/la050553t

    Article  CAS  PubMed  Google Scholar 

  35. Bauer F, Czihal S, Bertmer M et al (2017)Water-based functionalization of mesoporous siliceous materials, Part 1: Morphology and stability of grafted 3-aminopropyltriethoxysilane. Microporous Mesoporous Mater 250:221–231. https://doi.org/10.1016/j.micromeso.2016.01.046

    Article  CAS  Google Scholar 

  36. Meroni D, lo Presti L, di Liberto G et al (2017) A close look at the structure of the TiO2-APTES interface in hybrid nanomaterials and its degradation pathway: an experimental and theoretical study. J Phys Chem C 121:430–440. https://doi.org/10.1021/acs.jpcc.6b10720

    Article  CAS  Google Scholar 

  37. Pasternack RM, Rivillon Amy S, Chabal YJ (2008) Attachment of 3-(Aminopropyl)triethoxysilane on silicon oxide surfaces: dependence on solution temperature. Langmuir 24:12963–12971. https://doi.org/10.1021/la8024827

    Article  CAS  PubMed  Google Scholar 

  38. Saravanan P, Jayamoorthy K, Ananda Kumar S (2015)Switch-On fluorescence and photo-induced electron transfer of 3-aminopropyltriethoxysilane to ZnO: Dual applications in sensors and antibacterial activity. Sens Actuators B 221:784–791. https://doi.org/10.1016/j.snb.2015.05.069

    Article  CAS  Google Scholar 

  39. Singh M, Sviridenkova N, Timur N et al (2016) Synthesis and characterization of stable iron oxide nanoparticle with amino covalent binding on the surface for biomedical application. J Cluster Sci 27:1383–1393. https://doi.org/10.1007/s10876-016-1007-x

    Article  CAS  Google Scholar 

  40. Wang G, Ma Y, Tong Y, Dong X (2016) Synthesis, characterization and magnetorheological study of 3-aminopropyltriethoxysilane-modified Fe3O4 nanoparticles. Smart Mater Struct 25:035028. https://doi.org/10.1088/0964-1726/25/3/035028

    Article  CAS  Google Scholar 

  41. Li Y, Chen H, Wu J et al (2018) Preparation and characterization of APTES modified magnetic MMT capable of using as anisotropic nanoparticles. Appl Surf Sci 447:393–400. https://doi.org/10.1016/j.apsusc.2018.03.230

    Article  CAS  Google Scholar 

  42. Caputo F, Mameli M, Sienkiewicz A et al (2017) A novel synthetic approach of cerium oxide nanoparticles with improved biomedical activity. Sci Rep 7:4636. https://doi.org/10.1038/s41598-017-04098-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Baghdadi YN, Youssef L, Bouhadir K et al (2020) The effects of modified zinc oxide nanoparticles on the mechanical/thermal properties of epoxy resin. J Appl Polym Sci 137:49330. https://doi.org/10.1002/app.49330

    Article  CAS  Google Scholar 

  44. Liu Z-Y, Shen C-L, Lou Q et al (2020) Efficient chemiluminescent ZnO nanoparticles for cellular imaging. J Lumin 221:117111. https://doi.org/10.1016/j.jlumin.2020.117111

    Article  CAS  Google Scholar 

  45. Dalod ARM, Grendal OG, Skjærvø SL et al (2017) Controlling oriented attachment and in situ functionalization of TiO2 nanoparticles during hydrothermal synthesis with APTES. J Phys Chem C 121:11897–11906. https://doi.org/10.1021/acs.jpcc.7b02604

    Article  CAS  Google Scholar 

  46. Favaro M, Abdi F, Crumlin E et al (2019) Interface science using ambient pressure hard x-ray photoelectron spectroscopy. Surfaces 2:78–99. https://doi.org/10.3390/surfaces2010008

    Article  CAS  Google Scholar 

  47. Yang J, Liao M, Hong G et al (2020) Effect of APTES- or MPTS-conditioned nanozirconia fillers on mechanical properties of bis-GMA-based resin composites. ACS Omega 5:32540–32550. https://doi.org/10.1021/acsomega.0c04762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Itzhaik Alkotzer Y, Grzegorzewski F, Belausov E et al (2019)In situ interfacial surface modification of hydrophilic silica nanoparticles by two organosilanes leading to stable Pickering emulsions. RSC Adv 9:39611–39621. https://doi.org/10.1039/C9RA07597F

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Ren G, Wang M, Wang L et al (2018) Dynamic covalent silica nanoparticles for pH-switchable pickering emulsions. Langmuir 34:5798–5806. https://doi.org/10.1021/acs.langmuir.8b00757

    Article  CAS  PubMed  Google Scholar 

  50. Ukaji E, Furusawa T, Sato M, Suzuki N (2007) The effect of surface modification with silane coupling agent on suppressing the photo-catalytic activity of fine TiO2 particles as inorganic UV filter. Appl Surf Sci 254:563–569. https://doi.org/10.1016/j.apsusc.2007.06.061

    Article  CAS  Google Scholar 

  51. Cheng F, Sajedin SM, Kelly SM et al (2014)UV-stable paper coated with APTES-modified P25 TiO2 nanoparticles. Carbohyd Polym 114:246–252. https://doi.org/10.1016/j.carbpol.2014.07.076

    Article  CAS  Google Scholar 

  52. Senatova SI, Mandal AR, Senatov FS et al (2015) Optical properties of stabilized ZnO nanoparticles, perspective for UV-protection in sunscreens. Curr Nanosci 11:354–359. https://doi.org/10.2174/1573413710666141119221345

    Article  CAS  Google Scholar 

  53. Bai Y, Li Z, Cheng B et al (2017) Higher UV-shielding ability and lower photocatalytic activity of TiO2@SiO2/APTES and its excellent performance in enhancing the photostability of poly(p-phenylene sulfide). RSC Adv 7:21758–21767. https://doi.org/10.1039/C6RA28098F

    Article  CAS  Google Scholar 

  54. Samantaray CB, Hastings JeffreyT (2011) Deep UV patterning of 3-amino-propyl-triethoxy-silaneself-assembled molecular layers on alumina. J Vac Sci Technol B 29:041603. https://doi.org/10.1116/1.3597437

  55. Saravanan P, Jayamoorthy K, Anandakumar S (2016) Fluorescence quenching of APTES by Fe2O3 nanoparticles – Sensor and antibacterial applications. J Lumin 178:241–248. https://doi.org/10.1016/j.jlumin.2016.05.031

    Article  CAS  Google Scholar 

  56. Baek Y-W, An Y-J(2011) Microbial toxicity of metal oxide nanoparticles (CuO, NiO, ZnO, and Sb2O3) to Escherichia coli, Bacillus subtilis, and Streptococcus aureus. Sci Total Environ 409:1603–1608. https://doi.org/10.1016/j.scitotenv.2011.01.014

    Article  CAS  PubMed  Google Scholar 

  57. Esparza-González SC, Sánchez-Valdés S, Ramírez-Barrón SN et al (2016) Effects of different surface modifying agents on the cytotoxic and antimicrobial properties of ZnO nanoparticles. Toxicol In Vitro 37:134–141. https://doi.org/10.1016/j.tiv.2016.09.020

    Article  CAS  PubMed  Google Scholar 

  58. Klaysri R, Tubchareon T, Praserthdam P (2017)One-step synthesis of amine-functionalized TiO2 surface for photocatalytic decolorization under visible light irradiation. J Ind Eng Chem 45:229–236. https://doi.org/10.1016/j.jiec.2016.09.027

    Article  CAS  Google Scholar 

  59. Rokicka-Konieczna P, Wanag A, Sienkiewicz A et al (2020) Antibacterial effect of TiO2 nanoparticles modified with APTES. Catal Commun 134:105862. https://doi.org/10.1016/j.catcom.2019.105862

    Article  CAS  Google Scholar 

  60. Ranmadugala D, Ebrahiminezhad A, Manley-Harris M et al (2017) The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability. Process Biochem 62:231–240. https://doi.org/10.1016/j.procbio.2017.07.003

    Article  CAS  Google Scholar 

  61. Ranmadugala D, Ebrahiminezhad A, Manley-Harris M et al (2017) Impact of 3–Aminopropyltriethoxysilane-coated iron oxide nanoparticles on menaquinone-7 production using B. subtilis. Nanomaterials 7:350. https://doi.org/10.3390/nano7110350

    Article  CAS  PubMed Central  Google Scholar 

  62. El-Naggar ME, Hassabo AG, Mohamed AL, Shaheen TI (2017) Surface modification of SiO2 coated ZnO nanoparticles for multifunctional cotton fabrics. J Colloid Interface Sci 498:413–422. https://doi.org/10.1016/j.jcis.2017.03.080

    Article  CAS  PubMed  Google Scholar 

  63. Ognjanović M, Stanković V, Knežević S et al (2020) TiO2/APTES cross-linked to carboxylic graphene based impedimetric glucose biosensor. Microchem J 158:105150. https://doi.org/10.1016/j.microc.2020.105150

    Article  CAS  Google Scholar 

  64. Dadkhah S, Ziaei E, Mehdinia A et al (2016) A glassy carbon electrode modified with amino-functionalized graphene oxide and molecularly imprinted polymer for electrochemical sensing of bisphenol A. Microchim Acta 183:1933–1941. https://doi.org/10.1007/s00604-016-1824-5

    Article  CAS  Google Scholar 

  65. Khan MZH, Liu X, Zhu J et al (2018) Electrochemical detection of tyramine with ITO/APTES/ErGO electrode and its application in real sample analysis. Biosensors Bioelectronics 108:76–81. https://doi.org/10.1016/j.bios.2018.02.042

    Article  CAS  PubMed  Google Scholar 

  66. Zor E, Hatay Patir I, Bingol H, Ersoz M (2013) An electrochemical biosensor based on human serum albumin/grapheneoxide/3-aminopropyltriethoxysilane modified ITO electrode for the enantioselective discrimination of d- and l-tryptophan. Biosensors Bioelectronics 42:321–325. https://doi.org/10.1016/j.bios.2012.10.068

    Article  CAS  PubMed  Google Scholar 

  67. Wang H, Su Y, Kim H et al (2015) A highly efficient ZrO2 nanoparticle based electrochemical sensor for the detection of organophosphorus pesticides. Chin J Chem 33:1135–1139. https://doi.org/10.1002/cjoc.201500460

    Article  CAS  Google Scholar 

  68. Erogul S, Bas SZ, Ozmen M, Yildiz S (2015) A new electrochemical sensor based on Fe3O4 functionalized graphene oxide-gold nanoparticle composite film for simultaneous determination of catechol and hydroquinone. Electrochim Acta 186:302–313. https://doi.org/10.1016/j.electacta.2015.10.174

    Article  CAS  Google Scholar 

  69. Zhang Y, Gong SWY, Jin L et al (2009) Magnetic nanocomposites of Fe3O4/SiO2-FITC with pH-dependent fluorescence emission. Chin Chem Lett 20:969–972. https://doi.org/10.1016/j.cclet.2009.03.038

    Article  CAS  Google Scholar 

  70. Ebrahiminezhad A, Ghasemi Y, Rasoul-Amini S et al (2013) Preparation of novel magnetic fluorescent nanoparticles using amino acids. Colloids Surf B 102:534–539. https://doi.org/10.1016/j.colsurfb.2012.08.046

    Article  CAS  Google Scholar 

  71. Baumgärtel T, von Borczyskowski C, Graaf H (2013) Selective surface modification of lithographic silicon oxide nanostructures by organofunctional silanes. Beilstein J Nanotechnol 4:218–226. https://doi.org/10.3762/bjnano.4.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Luong TT, Knoppe S, Bloemen M et al (2016) Magnetothermal release of payload from iron oxide/silica drug delivery agents. J Magn Magn Mater 416:194–199. https://doi.org/10.1016/j.jmmm.2016.04.081

    Article  CAS  Google Scholar 

  73. Eghbali P, Fattahi H, Laurent S et al (2016)Fluorophore-tagged superparamagnetic iron oxide nanoparticles as bimodal contrast agents for MR/optical imaging. J Iran Chem Soc 13:87–93. https://doi.org/10.1007/s13738-015-0715-8

    Article  CAS  Google Scholar 

  74. Saravanan P, Duraibabu D, Jayamoorthy K et al (2018) Twin applications of tetra-functional epoxy monomers for anticorrosion and antifouling studies. Silicon 10:555–565. https://doi.org/10.1007/s12633-016-9489-6

    Article  CAS  Google Scholar 

  75. Dhanapal D, Muthukaruppan A, Srinivasan AK (2018) Tetraglycidyl epoxy reinforced with surface functionalized mullite fiber for substantial enhancement in thermal and mechanical properties of epoxy nanocomposites. Silicon 10:585–594. https://doi.org/10.1007/s12633-016-9496-7

    Article  CAS  Google Scholar 

  76. Suresh S, Nisha P, Saravanan P et al (2018) Investigation of the Thermal and Dielectric Behavior of Epoxy Nano-Hybrids by using Silane Modified Nano-ZnO. Silicon 10:1291–1303. https://doi.org/10.1007/s12633-017-9604-3

    Article  CAS  Google Scholar 

  77. Qiao R, Yang C, Gao M (2009) Superparamagnetic iron oxide nanoparticles: from preparations to in vivo MRI applications. J Mater Chem 19:6274. https://doi.org/10.1039/b902394a

    Article  CAS  Google Scholar 

  78. Feng B, Hong RY, Wang LS et al (2008) Synthesis of Fe3O4/APTES/PEG diacid functionalized magnetic nanoparticles for MR imaging. Colloids Surf A 328:52–59. https://doi.org/10.1016/j.colsurfa.2008.06.024

    Article  CAS  Google Scholar 

  79. Yamaura M, Camilo RL, Sampaio LC et al (2004) Preparation and characterization of (3-aminopropyl)triethoxysilane-coated magnetite nanoparticles. J Magn Magn Mater 279:210–217. https://doi.org/10.1016/j.jmmm.2004.01.094

    Article  CAS  Google Scholar 

  80. Olariu CI, Yiu HHP, Bouffier L et al (2011) Multifunctional Fe3O4 nanoparticles for targeted bi-modal imaging of pancreatic cancer. J Mater Chem 21:12650. https://doi.org/10.1039/c1jm11370d

    Article  CAS  Google Scholar 

  81. Ghutepatil PR, Salunkhe AB, Khot VM, Pawar SH (2019) APTES (3-aminopropyltriethoxy silane) functionalized MnFe2O4 nanoparticles: a potential material for magnetic fluid hyperthermia. Chem Pap 73:2189–2197. https://doi.org/10.1007/s11696-019-00768-z

    Article  CAS  Google Scholar 

  82. Pan M, Kim M, Blauch L, Tang SKY (2016)Surface-functionalizable amphiphilic nanoparticles for pickering emulsions with designer fluid–fluid interfaces. RSC Adv 6:39926–39932. https://doi.org/10.1039/C6RA03950B

    Article  CAS  Google Scholar 

  83. Zhou Y, Quan G, Wu Q et al (2018) Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B 8:165–177. https://doi.org/10.1016/j.apsb.2018.01.007

    Article  PubMed  PubMed Central  Google Scholar 

  84. Shen L, Li B, Qiao Y (2018) Fe3O4 nanoparticles in targeted drug/gene delivery systems. Materials 11:324. https://doi.org/10.3390/ma11020324

    Article  CAS  PubMed Central  Google Scholar 

  85. Hosseini F, Sadjadi M, Farhadyar N (2014) Fe3O4 nanoparticles modified with APTES as the carrier for (+)-(S)-2-(6-methoxynaphthalen-2-yl) propanoic acid (Naproxen) and (RS) 2-(3-benzoylphenyl)-propionic acid (Ketoprofen) drug. Orient J Chem 30:1609–1618. https://doi.org/10.13005/ojc/300420

    Article  CAS  Google Scholar 

  86. Saif B, Wang C, Chuan D, Shuang S (2015) Synthesis and characterization of Fe3O4 coated on APTES as carriers for morin-anticancer drug. J Biomater Nanobiotechnol 06:267–275. https://doi.org/10.4236/jbnb.2015.64025

    Article  CAS  Google Scholar 

  87. Karade VC, Sharma A, Dhavale RP et al (2021) APTES monolayer coverage on self-assembled magnetic nanospheres for controlled release of anticancer drug Nintedanib. Sci Rep 11:5674. https://doi.org/10.1038/s41598-021-84770-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Javid A, Ahmadian S, Saboury AA et al (2014) Biocompatible APTES–PEG modified magnetite nanoparticles: effective carriers of antineoplastic agents to ovarian cancer. Appl Biochem Biotechnol 173:36–54. https://doi.org/10.1007/s12010-014-0740-6

    Article  CAS  PubMed  Google Scholar 

  89. Dayyani N, Ramazani A, Khoee S, Shafiee A (2018) Synthesis and characterization of the first generation of Polyamino-ester dendrimer-grafted magnetite nanoparticles from 3-Aminopropyltriethoxysilane(APTES) via the convergent approach. Silicon 10:595–601. https://doi.org/10.1007/s12633-016-9497-6

    Article  CAS  Google Scholar 

  90. Al Roaya MA, Manteghi F, Haghverdi M (2019) Synthesis and characterization of hollow mesoporous silica spheres and studying the load and release of dexamethasone. Silicon 11:1401–1411. https://doi.org/10.1007/s12633-018-9943-8

    Article  CAS  Google Scholar 

  91. Zhao X, Shang T, Zhang X et al (2016) Passage of magnetic Tat-Conjugated Fe3O4@SiO2 nanoparticles across in vitro blood-brain barrier. Nanoscale Res Lett 11:451. https://doi.org/10.1186/s11671-016-1676-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Dettin M, Bagno A, Gambaretto R et al (2009) Covalent surface modification of titanium oxide with different adhesive peptides: Surface characterization and osteoblast-like cell adhesion. J Biomed Mater Res Part A 90A:35–45. https://doi.org/10.1002/jbm.a.32064

    Article  CAS  Google Scholar 

  93. Vinzant N, Scholl JL, Wu C-M et al (2017) Iron oxide nanoparticle delivery of peptides to the brain: reversal of anxiety during drug withdrawal. Front Neurosci 11. https://doi.org/10.3389/fnins.2017.00608

  94. Givens BE, Xu Z, Fiegel J, Grassian VH (2017) Bovine serum albumin adsorption on SiO2 and TiO2 nanoparticle surfaces at circumneutral and acidic pH: A tale of two nano-bio surface interactions. J Colloid Interface Sci 493:334–341. https://doi.org/10.1016/j.jcis.2017.01.011

    Article  CAS  PubMed  Google Scholar 

  95. Maltas E, Ozmen M, Vural HC et al (2011) Immobilization of albumin on magnetite nanoparticles. Mater Lett 65:3499–3501. https://doi.org/10.1016/j.matlet.2011.07.045

    Article  CAS  Google Scholar 

  96. Can K, Ozmen M, Ersoz M (2009) Immobilization of albumin on aminosilane modified superparamagnetic magnetite nanoparticles and its characterization. Colloids Surf B 71:154–159. https://doi.org/10.1016/j.colsurfb.2009.01.021

    Article  CAS  Google Scholar 

  97. Li Y, Zhang Y, Jiang L et al (2016) A sandwich-type electrochemical immunosensor based on the biotin- streptavidin-biotin structure for detection of human immunoglobulin G. Sci Rep 6:22694. https://doi.org/10.1038/srep22694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Safari J, Zarnegar Z (2014) Ultrasonic activated efficient synthesis of chromenes using amino-silane modified Fe3O4 nanoparticles: A versatile integration of high catalytic activity and facile recovery. J Mol Struct 1072:53–60. https://doi.org/10.1016/j.molstruc.2014.04.023

    Article  CAS  Google Scholar 

  99. Ghasemzadeh MA, Abdollahi-Basir MH, Babaei M (2015) Fe3O4@SiO2–NH2core-shell nanocomposite as an efficient and green catalyst for the multi-component synthesis of highly substituted chromeno[2,3-b]pyridines in aqueous ethanol media. Green Chem Lett Rev 8:40–49. https://doi.org/10.1080/17518253.2015.1107139

    Article  Google Scholar 

  100. Kusiak-Nejman E, Sienkiewicz A, Wanag A et al (2021) The role of adsorption in the photocatalytic decomposition of dyes on APTES-Modified TiO2 nanomaterials. Catalysts 11:172. https://doi.org/10.3390/catal11020172

    Article  CAS  Google Scholar 

  101. Sienkiewicz A, Wanag A, Kusiak-Nejman E et al (2021) Effect of calcination on the photocatalytic activity and stability of TiO2 photocatalysts modified with APTES. J Environ Chem Eng 9:104794. https://doi.org/10.1016/j.jece.2020.104794

    Article  CAS  Google Scholar 

  102. Baran T (2017) Practical, economical, and eco-friendly starch-supported palladium catalyst for Suzuki coupling reactions. J Colloid Interface Sci 496:446–455. https://doi.org/10.1016/j.jcis.2017.02.047

    Article  CAS  PubMed  Google Scholar 

  103. Sharma RK, Gaur R, Yadav M et al (2018) An efficient copper-based magnetic nanocatalyst for the fixation of carbon dioxide at atmospheric pressure. Sci Rep. https://doi.org/10.1038/s41598-018-19551-3

    Article  PubMed  PubMed Central  Google Scholar 

  104. Sharma RK, Sharma S (2014) Silica nanosphere-supported palladium(II) furfural complex as a highly efficient and recyclable catalyst for oxidative amination of aldehydes. Dalton Trans 43:1292–1304. https://doi.org/10.1039/C3DT51928G

    Article  CAS  PubMed  Google Scholar 

  105. Shendy SA, Shahverdizadeh GH, Babazadeh M et al (2020) Preparation and characterization of acetic acid-functionalized Fe3O4@SiO2 nanoparticles as an efficient Nanocatalyst for the synthesis of nitrones in water. Silicon 12:1735–1742. https://doi.org/10.1007/s12633-019-00252-z

    Article  CAS  Google Scholar 

  106. Jafarzadeh M, Soleimani E, Norouzi P et al (2015) Preparation of trifluoroacetic acid-immobilized Fe3O4@SiO2–APTES nanocatalyst for synthesis of quinolines. J Fluor Chem 178:219–224. https://doi.org/10.1016/j.jfluchem.2015.08.007

    Article  CAS  Google Scholar 

  107. Sajjadifar S, Gheisarzadeh Z (2019) Isatin-SO3H coated on amino propyl modified magnetic nanoparticles (Fe3O4@APTES@isatin-SO3H) as a recyclable magnetic nanoparticle for the simple and rapid synthesis of pyrano[2,3-d] pyrimidines derivatives. Appl Organomet Chem 33:e4602. https://doi.org/10.1002/aoc.4602

    Article  CAS  Google Scholar 

  108. Wang F, Ling B, Li Q, Abouhany R (2020) Dual roles of 3-aminopropyltriethoxysilane in preparing molecularly imprinted silica particles for specific recognition of target molecules. RSC Adv 10:20368–20373. https://doi.org/10.1039/D0RA01684E

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Yen C-C, Chuang Y-C, Ko C-Y et al (2016) Immobilization of Chlamydomonas reinhardtii CLH1 on APTES-coated magnetic iron oxide nanoparticles and its potential in the production of chlorophyll derivatives. Molecules 21:972. https://doi.org/10.3390/molecules21080972

    Article  CAS  PubMed Central  Google Scholar 

  110. Thangaraj B, Jia Z, Dai L et al (2019) Effect of silica coating on Fe3O4 magnetic nanoparticles for lipase immobilization and their application for biodiesel production. Arab J Chem 12:4694–4706. https://doi.org/10.1016/j.arabjc.2016.09.004

    Article  CAS  Google Scholar 

  111. Samiur Rashid S, Hossain Sikder MdB A. Rahim MH bin, et al (2021) Cellulase immobilization on TEOS encapsulated and APTES functionalized magnetic nanoparticles (MNPs). IOP Conf Ser: Mater Sci Eng 1092:012071. https://doi.org/10.1088/1757-899X/1092/1/012071

  112. Kong X, Yang B, Xiong H et al (2014) Selective removal of heavy metal ions from aqueous solutions with surface functionalized silica nanoparticles by different functional groups. J Cent South Univ 21:3575–3579. https://doi.org/10.1007/s11771-014-2338-0

    Article  CAS  Google Scholar 

  113. Gallo-Cordova A, Morales M, del Mazarío P (2019) Effect of the surface charge on the adsorption capacity of chromium(VI) of iron oxide magnetic nanoparticles prepared by microwave-assisted synthesis. Water 11:2372. https://doi.org/10.3390/w11112372

    Article  CAS  Google Scholar 

  114. Yang Z, Chen X, Li S et al (2020) Effective removal of Cr(VI) from aqueous solution based on APTES modified nanoporous silicon prepared from kerf loss silicon waste. Environ Sci Pollut Res 27:10899–10909. https://doi.org/10.1007/s11356-019-07427-6

    Article  CAS  Google Scholar 

  115. Gutiérrez Moreno JJ, Pan K, Wang Y, Li W (2020) Computational study of APTES surface functionalization of diatom-like amorphous SiO2 surfaces for heavy metal adsorption. Langmuir 36:5680–5689. https://doi.org/10.1021/acs.langmuir.9b03755

    Article  CAS  PubMed  Google Scholar 

  116. Rezaei H, Shahbazi K, Behbahani M (2020) Application of amine modified magnetic nanoparticles as an efficient and reusable nanofluid for removal of Ba2+ in high saline waters. Silicon. https://doi.org/10.1007/s12633-020-00743-4

  117. Talavera-Pech WA, Ávila-Ortega A, Pacheco-Catalán D et al (2019) Effect of functionalization synthesis type of amino-MCM-41 mesoporous silica nanoparticles on Its RB5 adsorption capacity and kinetics. Silicon 11:1547–1555. https://doi.org/10.1007/s12633-018-9975-0

    Article  CAS  Google Scholar 

  118. Shariati S, Chinevari A, Ghorbani M (2020) Simultaneous removal of four dye pollutants in mixture using amine functionalized Kit-6 silica mesoporous magnetic nanocomposite. Silicon 12:1865–1878. https://doi.org/10.1007/s12633-019-00288-1

    Article  CAS  Google Scholar 

  119. Nnadozie EC, Ajibade PA (2020) Adsorption, kinetic and mechanistic studies of Pb(II) and Cr(VI) ions using APTES functionalized magnetic biochar. Microporous Mesoporous Mater 309:110573. https://doi.org/10.1016/j.micromeso.2020.110573

    Article  CAS  Google Scholar 

  120. Zhang B, Wang Y, Zhang J et al (2020)Well-defined 3-Aminopropyltriethoxysilane functionalized magnetite nanoparticles and their adsorption performance for partially hydrolyzed polyacrylamide from aqueous solution. Colloids Surf A 586:124288. https://doi.org/10.1016/j.colsurfa.2019.124288

    Article  CAS  Google Scholar 

  121. Rowley J, Abu-Zahra NH (2019) Synthesis and characterization of polyethersulfone membranes impregnated with (3-aminopropyltriethoxysilane) APTES-Fe3O4 nanoparticles for As(V) removal from water. J Environ Chem Eng 7:102875. https://doi.org/10.1016/j.jece.2018.102875

    Article  CAS  Google Scholar 

  122. Sawan S, Hamze K, Youssef A et al (2021) Voltammetric study of the affinity of divalent heavy metals for guanine-functionalized iron oxide nanoparticles. Monatshefte für Chemie - Chem Mon 152:229–240. https://doi.org/10.1007/s00706-021-02738-2

    Article  CAS  Google Scholar 

  123. Alkindy MB, Naddeo V, Banat F, Hasan SW (2020) Synthesis of polyethersulfone (PES)/GO-SiO2 mixed matrix membranes for oily wastewater treatment. Water Sci Technol 81:1354–1364. https://doi.org/10.2166/wst.2019.347

    Article  CAS  PubMed  Google Scholar 

  124. Thomas JA, Schnell F, Kaveh-Baghbaderani Y et al (2020) Immunomagnetic Separation of Microorganisms with Iron Oxide Nanoparticles. Chemosensors 8:17. https://doi.org/10.3390/chemosensors8010017

    Article  CAS  Google Scholar 

  125. Ozmen M, Can K, Akin I et al (2009) Surface modification of glass beads with glutaraldehyde: Characterization and their adsorption property for metal ions. J Hazard Mater 171:594–600. https://doi.org/10.1016/j.jhazmat.2009.06.045

    Article  CAS  PubMed  Google Scholar 

  126. Ozmen M, Can K, Arslan G et al (2010) Adsorption of Cu(II) from aqueous solution by using modified Fe3O4 magnetic nanoparticles. Desalination 254:162–169. https://doi.org/10.1016/j.desal.2009.11.043

    Article  CAS  Google Scholar 

  127. Karimi M, Milani SA, Abolgashemi H (2016) Kinetic and isotherm analyses for thorium (IV) adsorptive removal from aqueous solutions by modified magnetite nanoparticle using response surface methodology (RSM). J Nucl Mater 479:174–183. https://doi.org/10.1016/j.jnucmat.2016.07.020

    Article  CAS  Google Scholar 

  128. Kothavale VP, Chavan VD, Sahoo SC et al (2019) Removal of Cu(II) from aqueous solution using APTES-GA modified magnetic iron oxide nanoparticles: kinetic and isotherm study. Mater Res Express 6:106103. https://doi.org/10.1088/2053-1591/ab3590

    Article  CAS  Google Scholar 

  129. Poursaberi T, Ghanbarnejad H, Akbar V (2013) Selective magnetic removal of pb(II) from aqueous solution by porphyrin linked-magnetic nanoparticles. J Nanostruct 2:417–426. https://doi.org/10.7508/JNS.2012.04.003

    Article  Google Scholar 

  130. Poursaberi T, Hassanisadi M, Torkestani K, Zare M (2012) Development of zirconium (IV)-metalloporphyrin grafted Fe3O4 nanoparticles for efficient fluoride removal. Chem Eng J 189–190:117–125. https://doi.org/10.1016/j.cej.2012.02.039

    Article  CAS  Google Scholar 

  131. Poursaberi T, Hassanisadi M, Shanehsaz M (2012)Amino-silica coated magnetic nanoparticles modified with Ni(II)- metalloporphyrin for the selective removal of nitrate ions from water samples. J Porphyrins Phthalocyanines 16:390–395. https://doi.org/10.1142/S108842461250071X

    Article  CAS  Google Scholar 

  132. Helal AS, Mazario E, Mayoral A et al (2018) Highly efficient and selective extraction of uranium from aqueous solution using a magnetic device: succinyl-β-cyclodextrin-APTES@maghemite nanoparticles. Environ Sci: Nano 5:158–168. https://doi.org/10.1039/C7EN00902J

    Article  CAS  Google Scholar 

  133. Huang Y, Wang Y, Wang Y et al (2016) Ionic liquid-coated Fe3O4/APTES/graphene oxide nanocomposites: synthesis, characterization and evaluation in protein extraction processes. RSC Adv 6:5718–5728. https://doi.org/10.1039/C5RA22013K

    Article  CAS  Google Scholar 

  134. Bhar R, Kanwar R, Mehta SK (2020) Surface engineering of nanoparticles anchored meso-macroporous silica heterostructure: An efficient adsorbent for DNA. Mater Chem Phys 255:123541. https://doi.org/10.1016/j.matchemphys.2020.123541

    Article  CAS  Google Scholar 

  135. Arifin NFT, Zulkipli NAN, Yusof N et al (2019) Preparation and characterization of APTES-functionalized graphene oxide for CO2 adsorption. J Adv Res Fluid Mech Therm Sci 61:297–305

    Google Scholar 

  136. Saaroni MZAW, Abdullah H, Masiren EE, Khan MdMR (2019) CO2 adsorption using 3-triethoxysilylpropylamine (APTES)-modified commercial rice husk activated carbon. AIP Conf Proc 2124:020029. https://doi.org/10.1063/1.5117089

  137. Kishor R, Ghoshal AK (2015) APTES grafted ordered mesoporous silica KIT-6 for CO2 adsorption. Chem Eng J 262:882–890. https://doi.org/10.1016/j.cej.2014.10.039

    Article  CAS  Google Scholar 

  138. Quang DV, Dindi A, Abu-Zahra MRM (2017)One-step process using CO2 for the preparation of amino-functionalized mesoporous silica for CO2 capture application. ACS Sustain Chem Eng 5:3170–3178. https://doi.org/10.1021/acssuschemeng.6b02961

    Article  CAS  Google Scholar 

  139. Sim K, Lee N, Kim J et al (2015) CO2 adsorption on amine-functionalized periodic mesoporous Benzenesilicas. ACS Appl Mater Interfaces 7:6792–6802. https://doi.org/10.1021/acsami.5b00306

    Article  CAS  PubMed  Google Scholar 

  140. Alkadhem AM, Elgzoly MAA, Alshami A, Onaizi SA (2021) Kinetics of CO2 capture by novel amine-functionalized magnesium oxide adsorbents. Colloids Surf A 616:126258. https://doi.org/10.1016/j.colsurfa.2021.126258

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support from NSERC Canada (grant number RGPIN-2018-05320) is gratefully acknowledged.

Funding

This work was supported by NSERC Canada (grant number RGPIN-2018-05320).

Author information

Authors and Affiliations

Authors

Contributions

EPCL initiated the idea for this review article, WZ performed the literature search and drafted the article, and EPCL critically revised the work.

Corresponding author

Correspondence to Edward P. C. Lai.

Ethics declarations

Conflict of Interest

The authors have no conflicts of interest.

Ethics Approval

Not applicable.

Consent to Participate

Not applicable.

Consent for Publication

The authors give full consent for publication of this work.

Disclosure of Potential Conflicts of Interest

The authors declare that they have no conflict of interest. 

Research Involving Human Participants and/or Animals

This manuscript does not contain any studies with human participants or animals performed by any of the authors.

Informed Consent

Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Lai, E.P.C. Chemical Functionalities of 3-aminopropyltriethoxy-silane for Surface Modification of Metal Oxide Nanoparticles. Silicon 14, 6535–6545 (2022). https://doi.org/10.1007/s12633-021-01477-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01477-7

Keywords

Navigation