Skip to main content
Log in

Ant Lion Optimizer for Suppression of Ambipolar Conduction in Schottky Barrier Carbon Nanotube Field Effect Transistors

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A mathematical model for the effect of oxide thickness on ambient conduction is provided in the Schottky Barrier Carbon Nanotubes (CNTs) Field Effect Transistor (SB-CNTFET). To develop them as the future of IC (integrated circuit) technology, the suppression of ambipolar behaviour in SB-CNTFET is imperative. The ambipolar nature of SB-CNTFET contributes to a high amount of leakage current. tox ≈ 49.91nm uses a dielectric of gate oxide with a thickness to inhibit the ambipolar behaviour. In an SB-CNTFET, the conductance is regulated by the electrical field at the source/drain contacts and the band bending length at the contacts is determined by tox. Therefore, the prime parameter tox that affects the Schottky barrier width and the subthreshold area. The suppression of ambipolar property is presented. The SB-CNTFET is produced using high-K dielectrics such as Zirconium dioxide. This work discusses the suppression of ambipolar activity in SB-CNTFETs without reducing the Ion current using an appropriate dielectric with optimum thickness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abbas I, Saeed T, Alhothuali M (2021) Hyperbolic two-temperature photo-thermal interaction in a semiconductor medium with a cylindrical cavity. Silicon 13(6):1871–1878

    Article  CAS  Google Scholar 

  2. Arefinia Z, Orouji AA (2009) Novel attributes in the performance and scaling effects of carbon nanotube field-effect transistors with halo doping. Superlattices Microstruct 45(6):535–546

    Article  CAS  Google Scholar 

  3. Assiri AS, Hussien AG, Amin M (2020) Ant lion optimization: variants, hybrids, and applications. IEEE Access 8:77746–77764

    Article  Google Scholar 

  4. Atzori L, Iera A, Morabito G (2010) The internet of things: A survey. Comput Netw 54 (15):2787–2805

    Article  Google Scholar 

  5. Avouris P, Appenzeller J, Martel R, Wind SJ (2003) Carbon nanotube electronics. Proc IEEE 91(11):1772–1784

    Article  CAS  Google Scholar 

  6. Bao Z, Cui G, Chen J, Sun T, Xiao Y (2018) A novel random walk algorithm with compulsive evolution combined with an optimum-protection strategy for heat exchanger network synthesis. Energy 152:694–708

    Article  Google Scholar 

  7. Behera TM, Mohapatra SK, Samal UC, Khan MS, Daneshmand M, Gandomi AH (2019) I-sep: An improved routing protocol for heterogeneous wsn for iot-based environmental monitoring. IEEE Internet Things J 7(1):710–717

    Article  Google Scholar 

  8. Behera TM, Mohapatra SK, Samal UC, Khan MS, Daneshmand M, Gandomi AH (2019) Residual energy-based cluster-head selection in wsns for iot application. IEEE Internet Things J 6(3):5132–5139

    Article  Google Scholar 

  9. Behera TM, Samal UC, Mohapatra SK (2018) Energy-efficient modified leach protocol for iot application. IET Wirel Sens Syst 8(5):223–228

    Article  Google Scholar 

  10. Bhatt VD, Joshi S, Becherer M, Lugli P (2017) Flexible, low-cost sensor based on electrolyte gated carbon nanotube field effect transistor for organo-phosphate detection. Sensors 17(5):1147

    Article  PubMed Central  Google Scholar 

  11. Chen W, Zhang Z, Feng Z, Chen Y, Jiang K, Fan S, Iskander M (2008) Measurement of polarized nano-material (pnm) for microwave applications. In: 2008 IEEE MTT-S international microwave symposium digest. IEEE, pp 1577–1580

  12. Choi J, An SJ (2020) Backside metallization of ag–sn–ag multilayer thin films and die attach for semiconductor applications. J Electron Mater: 1–7

  13. Dürkop T, Getty S, Cobas E, Fuhrer M (2004) Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett 4(1):35–39

    Article  Google Scholar 

  14. Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: MHS’95. Proceedings of the sixth international symposium on micro machine and human science. IEEE, pp 39–43

  15. Elhadidy H, Mahi F, Franc J, Musiienko A, Dedic V, Schneeweiss O (2019) Calculations of high-frequency noise spectral density of different cdte metal–semiconductor–metal schottky contacts. J Electron Mater 48(12):7806–7812

    Article  CAS  Google Scholar 

  16. Endoh T, Momma Y (2007) Study of 30-nm double-gate mosfet with halo implantation technology using a two-dimensional device simulator. IEICE Trans Electron 90(5):1000–1005

    Article  Google Scholar 

  17. Guo G, Mandal M, Jing Y (2012) A robust detector of known signal in non-gaussian noise using threshold systems. Signal Process 92(11):2676–2688

    Article  Google Scholar 

  18. Guo J, Datta S, Lundstrom M (2004) A numerical study of scaling issues for schottky-barrier carbon nanotube transistors. IEEE Trans Electron Devices 51(2):172–177

    Article  CAS  Google Scholar 

  19. Huo X, Zhang M, Chan PC, Liang Q, Tang Z (2004) High frequency s parameters characterization of back-gate carbon nanotube field-effect transistors. In: IEDM technical digest. IEEE International Electron Devices Meeting, 2004. IEEE, pp 691–694

  20. Hwang H, Lee DH, Hwang JM (1996) Degradation of mosfets drive current due to halo ion implantation. In: International electron devices meeting. Technical Digest. IEEE, pp 567–570

  21. Ieong M, Narayanan V, Singh D, Topol A, Chan V, Ren Z (2006) Transistor scaling with novel materials. Materials Today 9(6):26–31

    Article  Google Scholar 

  22. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  CAS  PubMed  Google Scholar 

  23. Javey A, Kong J (2009) Carbon nanotube electronics. Springer Science & Business Media

  24. Jiang L, Li T, Jing N, Kim NS, Guo M, Liang X (2017) Cnfet-based high throughput simd architecture. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 37 (7):1331–1344

    Article  Google Scholar 

  25. John D, Castro L, Pereira P, Pulfrey D (2004) A schrödinger-poisson solver for modeling carbon nanotube fets. In: Proc. NSTI Nanotech, vol 3

  26. Kilic H, Yuzgec U, Karakuzu C (2020) A novel improved antlion optimizer algorithm and its comparative performance. Neural Comput and Applic 32(8):3803–3824

    Article  Google Scholar 

  27. Kumar A, Srivastava S, Saxena S, Tripathi SL (2020) (ba/pb) x sr 1- x tio 3 based capacitive sensor with lanio 3 electrode for higher tunability. J Mater Sci Mater Electron 31(22):20387–20399

    Article  Google Scholar 

  28. Lin YM, Appenzeller J, Avouris P (2004) Ambipolar-to-unipolar conversion of carbon nanotube transistors by gate structure engineering. Nano Lett 4(5):947–950

    Article  CAS  Google Scholar 

  29. Liu F, Chen W, Zhang Z, Feng Z, Chen Y, Zhang H (2009) Measurement on dipole antenna with light polarized nano-material (pnm) textile reflector. In: 2009 IEEE MTT-S international microwave symposium digest. IEEE, pp 1069–1072

  30. Mendiratta N, Tripathi SL (2020) A review on performance comparison of advanced mosfet structures below 45 nm technology node. J Semicond 41(6):061401

    Article  CAS  Google Scholar 

  31. Messaoud RB (2020) Extraction of uncertain parameters of double-diode model of a photovoltaic panel using ant lion optimization. SN Appl Sci 2(2):1–8

    Article  Google Scholar 

  32. Monica PR, Sreedevi V (2019) Suppression of ambipolar conduction in schottky barrier carbon nanotube field effect transistors: Modeling, optimization using particle swarm intelligence, and fabrication. Comput Model Eng Sci 119(3):577–591

    Google Scholar 

  33. Naderi A, Keshavarzi P, Orouji AA (2011) Ldc–cntfet: A carbon nanotube field effect transistor with linear doping profile channel. Superlattices Microstruct 50(2):145–156

    Article  CAS  Google Scholar 

  34. Nouri-Bayat R, Kashani-Nia AR (2017) Designing a carbon nanotube field-effect transistor with high transition frequency for ultra-wideband application. Engineering 9(1):22–35

    Article  CAS  Google Scholar 

  35. Odintsov AA (2000) Schottky barriers in carbon nanotube heterojunctions. Phys Rev Lett 85 (1):150

    Article  CAS  PubMed  Google Scholar 

  36. Pourfath M (2007) Numerical study of quantum transport in carbon nanotube-based transistors. Ph.D thesis

  37. Radosavljević M, Heinze S, Tersoff J, Avouris P (2003) Drain voltage scaling in carbon nanotube transistors. Appl Phys Lett 83(12):2435–2437

    Article  Google Scholar 

  38. Ramezani M, Bahmanyar D, Razmjooy N (2020) A new optimal energy management strategy based on improved multi-objective antlion optimization algorithm: applications in smart home. SN Appl Sci 2 (12):1–17

    Article  Google Scholar 

  39. Raychowdhury A (2007) Designing low-power and high-performance digital circuits with carbon nanotube transistors. Ph.D. thesis, Purdue University

  40. Samal A, Tripathi SL, Mohapatra SK (2020) A journey from bulk mosfet to 3 nm and beyond. Transactions on Electrical and Electronic Materials: 1–13

  41. Sirugudi H, Gadgil S, Vudadha C (2020) A novel low power ternary multiplier design using cnfets. In: 2020 33rd International conference on VLSI design and 2020 19th International conference on embedded systems (VLSID). IEEE, pp 25–30

  42. Soref R (2010) Silicon photonics: a review of recent literature. Silicon 2(1):1–6

    Article  CAS  Google Scholar 

  43. Thai TT, Yang L, DeJean GR, Tentzeris MM (2011) Nanotechnology enables wireless gas sensing. IEEE Microw Mag 12(4):84–95

    Article  Google Scholar 

  44. Vandana B, Kumar DJ, Mohapatra SK, Lata TS (2018) Impact of channel engineering (si1-0.25 ge0. 25) technique on gm (transconductance) and its higher order derivatives of 3d conventional and wavy junctionless finfets (jlt). Facta universitatis-series: Electronics and Energetics 31(2):257– 265

    Google Scholar 

  45. Xuan CT, Thuy NT, Luyen TT, Huyen TT, Tuan MA (2017) Carbon nanotube field-effect transistor for dna sensing. J Electron Mater 46(6):3507–3511

    Article  CAS  Google Scholar 

  46. Yan X, Xiao Y, Li Z (2006) Effects of intertube coupling and tube chirality on thermal transport of carbon nanotubes. J Appl Phys 99(12):124305

    Article  Google Scholar 

  47. Yang K, Yi Z, Jing Q, Yue R, Jiang W, Lin D (2013) Sonication-assisted dispersion of carbon nanotubes in aqueous solutions of the anionic surfactant sdbs: The role of sonication energy. Chin Sci Bull 58(17):2082–2090

    Article  CAS  Google Scholar 

  48. Yang Q, Scott D, Chung T, Stillman G (2000) Optimization of emitter cap growth conditions for ingap/gaas hbts with high current gain by lp-mocvd. J Electron Mater 29(1):75–79

    Article  CAS  Google Scholar 

  49. Yoon Y, Fodor J, Guo J (2007) A computational study of vertical partial-gate carbon-nanotube fets. IEEE Trans Electron Devices 55(1):283–288

    Article  Google Scholar 

  50. Zanchetta S, Todon A, Abramo A, Selmi L, Sangiorgi E (2002) Analytical and numerical study of the impact of halos on short channel and hot carrier effects in scaled mosfets. Solid-State Electron 46 (3):429–434

    Article  CAS  Google Scholar 

Download references

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have equal contribution in formulating the problems and getting the solution.

Corresponding author

Correspondence to Gagnesh Kumar.

Ethics declarations

I confirm for the following

1. No financial support from any institution or authors.

2. No conflicts of interest.

3. No research involving animals.

4. No research involving humans as subjects.

Competing interests

The authors declare that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Agrawal, S. Ant Lion Optimizer for Suppression of Ambipolar Conduction in Schottky Barrier Carbon Nanotube Field Effect Transistors. Silicon 14, 5809–5817 (2022). https://doi.org/10.1007/s12633-021-01353-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01353-4

Keywords

Navigation