Skip to main content
Log in

Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

In this paper, in order to improve the performance of a tunneling carbon nanotube field effect transistor (T-CNTFET) a new structure is proposed using multi-level impurity distribution along the drain region. The new T-CNTFET structure consists of six parts in the drain with stepwise doping distribution. The impurities on the drain side are n -type and the length of each region is 5nm. Electronic features of the proposed structure are simulated by the solution of Poisson and Schrödinger equations and the self-consistent method using Non-equilibrium Green’s Function (NEGF). Simulation results show that the proposed structure reduces the band curvature near the drain-channel connection and widens the tunneling barrier. As a result, band-to-band tunneling and the OFF current are reduced and the ON/OFF current ratio increases in comparison with the conventional structure. In summary, by improving the subthreshold swing parameters, delay time, power delay product (PDP and cut-off frequency compared to the conventional structure, the proposed structure can be considered as a proper candidate for digital applications with high speed and low power dissipation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Z. Kordrostami, M.H. Sheikhi, A. Zarifkar, IEEE Trans. Nanotechnol. 11, 526 (2012)

    Article  ADS  Google Scholar 

  2. K. Alam, R. Lake, IEEE Trans. Nanotechnol. 6, 652 (2007)

    Article  ADS  Google Scholar 

  3. D.L. Pulfrey, L. Chen, Solid State Electron. 53, 935 (2009)

    Article  ADS  Google Scholar 

  4. Z. Jamalabadi, P. Keshavarzi, A. Naderi, Int. J. Mod. Phys. B 28, 1450048 (2014)

    Article  ADS  Google Scholar 

  5. O. Rejaiba, A.F. Brana, A. Matoussi, Eur. Phys. J. Plus 131, 281 (2016)

    Article  Google Scholar 

  6. M. Pourfath, H. Kosina, S. Selberherr, J. Comput. Electron. 62, 243 (2007)

    Article  Google Scholar 

  7. A. Javey et al., Nano. Lett. 5, 345 (2005)

    Article  ADS  Google Scholar 

  8. N. Moghadam, M.R. Aziziyan, M.K. Moravvej-Farshi, Microelectron. Reliab. 53, 533 (2013)

    Article  Google Scholar 

  9. S. Dash, B. Jena, G.P. Mishra, Superlattices Microstruct. 97, 231 (2016)

    Article  ADS  Google Scholar 

  10. A.K. Sharma, R. Gupta, A. Sharma, Int. J. Sci. Technol. Manag. 03, 1537 (2014)

    Google Scholar 

  11. S.O. Koswatta, D.E. Nikonov, M.S. Lundstrom, IEDM Tech. Dig. (2005) pp. 518--521

  12. W.Y. Choi et al., IEEE Electron Device Lett. 28, 743 (2007)

    Article  ADS  Google Scholar 

  13. H. Wang et al., IEEE Electron Device Lett. 35, 798 (2014)

    Article  Google Scholar 

  14. M.J. Lee, W.Y. Choi, IEEE Electron Device Lett. 33, 1459 (2012)

    Article  ADS  Google Scholar 

  15. S. Saurabh, M.J. Kumar, IEEE Trans. Electron Devices 58, 404 (2011)

    Article  ADS  Google Scholar 

  16. A. Naderi, B. Abdi-Tahne, ECS J. Solid State Sci. Technol. 5, M131 (2016)

    Article  Google Scholar 

  17. A. Naderi, P. Keshavarzi, Superlattices Microstruct. 52, 962 (2012)

    Article  ADS  Google Scholar 

  18. Z. Arefinia, A.A. Orouji, Physica E 41, 196 (2008)

    Article  ADS  Google Scholar 

  19. A. Naderi, S.A. Ahmadmiri, ECS J. Solid State Sci. Technol. 5, M63 (2016)

    Article  Google Scholar 

  20. B. Abdi-Tahne, A. Naderi, Int. J. Mod. Phys. B 30, 1650242 (2016)

    Google Scholar 

  21. R. Yousefi, K. Saghafi, M.K. Moravvej-Farshi, IEEE Trans. Electron Dev. 57, 765 (2010)

    Article  ADS  Google Scholar 

  22. Z. Arefinia, Physica E 41, 1767 (2009)

    Article  ADS  Google Scholar 

  23. A.A. Orouji, S.A. Ahmadmiri, Physica E 42, 1456 (2010)

    Article  ADS  Google Scholar 

  24. W. Wang, Y. Sun, H. Wang, H. Xu, M. Xu, S. Jiang, G. Yue, Semicond. Sci. Technol. 31, 035002 (2016)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ali Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naderi, A., Ghodrati, M. Improving band-to-band tunneling in a tunneling carbon nanotube field effect transistor by multi-level development of impurities in the drain region. Eur. Phys. J. Plus 132, 510 (2017). https://doi.org/10.1140/epjp/i2017-11784-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11784-1

Navigation