Skip to main content
Log in

Suppression of Ambipolar Current in Enhanced Gate Based Schottky Barrier CNTFET Using Ant Lion Optimization

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In the recent past, due to ballistic transport capability, carbon nanotube field-effect transistors (CNTFETs) have emerged as a potential replacement to conventional semiconductor devices. However, the major bottleneck issue of appropriate CNT synthesis is still standing high, and the fabrication of CNTFETs is usually found possible with Ohmic or Schottky type contacts. This paper concentrates on Schottky barrier(SB) CNTFETs in which carriers’ transmission coefficient is modulated at metal-CNT contact. The basic nature of metal contacted CNTFET devices is ambipolar, and it has been widely proved with the use of coupled Schrödinger–Poisson equation. However, it restricts the efficiency of CNTFETs in both active and cutoff regimes. This paper demonstrates the use of double-gate (DG) structure in CNTFETs to suppress ambipolarity in an efficient way. We have explicitly used the ant lion optimization technique to optimize Ion and Ioff current and established that the proposed enhanced-gate overlapping approach improves the performance characteristic of the CNTFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Availability of data and materials

It is not applicable for this manuscript.

References

  1. Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P h (2002) Carbon nanotubes as schottky barrier transistors. Phys Rev Lett 89(10):106801

    Article  CAS  Google Scholar 

  2. Guo J, Datta S, Lundstrom M (2004) A numerical study of scaling issues for schottky-barrier carbon nanotube transistors. IEEE Trans Electron Dev 51(2):172–177

    Article  CAS  Google Scholar 

  3. Jooq MKQ, Mir A, Mirzakuchaki S, Farmani A (2020) Design and performance analysis of wrap-gate cntfet-based ring oscillators for iot applications. Integration 70:116–125

    Article  Google Scholar 

  4. Samal A, Tripathi SL, Mohapatra SK (2020) A journey from bulk mosfet to 3 nm and beyond. Transactions on Electrical and Electronic Materials, 1–13

  5. Vandana B, Kumar DJ, Mohapatra SK, Lata TS (2018) Impact of channel engineering (si1-0.25 ge0 25) technique on gm (transconductance) and its higher order derivatives of 3d conventional and wavy junctionless finfets (jlt). Facta Universitatis-Series: Electronics and Energetics 31(2):257–265

    Google Scholar 

  6. Luqi T, Danyang W, Song J, Ying L, Qianyi X, He T, Ningqin D, Xuefeng W, Yi Y, Tian-Ling R (2016) Fabrication techniques and applications of flexible graphene-based electronic devices. J Semicond 37(4):041001

    Article  Google Scholar 

  7. H Liu H Y u (2019) Ionic liquids for electrochemical energy storage devices applications. J Materials Sci Technol 35(4):674–686

    Article  Google Scholar 

  8. Jogad S, Loan SA, Afzal N, Alharbi AG (2021) Cntfet based class ab current conveyor ii: design, analysis and waveform generator applications. Int J Numer Modell: Electron Netw Dev Fields 34(1):e2783

    Article  Google Scholar 

  9. Rani S, Singh B (2021) Cntfet based 4-trit hybrid ternary adder-subtractor for low power & high-speed applications. Silicon, 1–14

  10. Ramos-Silva JN, Pacheco-Sanchez A, Diaz-Albarran LM, Rodriguez-Mendez LM, Enciso-Aguilar MA, Schröter M, Ramírez-García E (2020) High-frequency performance study of cntfet-based amplifiers. IEEE Trans Nanotechnol 19:284–291

    Article  CAS  Google Scholar 

  11. Lyubutin PS, Burkov MV, Eremin AV (2020) Evaluation of elastic modulus of carbon fiber reinforced polymers using an optical extensometer. J Phys: Conf Series 1611:012019. IOP Publishing

    CAS  Google Scholar 

  12. Wang Z, Shan X, Cui X, Tian P (2020) Characteristics and techniques of gan-based micro-leds for application in next-generation display. J Semicond 41(4):041606

    Article  CAS  Google Scholar 

  13. Cheng R, Chen Z, Yuan S, Takenaka M, Takagi S, Han G, Zhang R (2021) Mobility enhancement techniques for ge and gesn mosfets. J Semicond 42(2):023101

    Article  Google Scholar 

  14. Liao F, Wang H, Guo X, Guo Z, Tong L, Riaud A, Sheng Y, Chen L, Sun Q, Zhou P et al (2020) Charge transport and quantum confinement in mos2 dual-gated transistors. J Semicond 41(7):072904

    Article  CAS  Google Scholar 

  15. Mendiratta N, Tripathi SL (2020) A review on performance comparison of advanced mosfet structures below 45 nm technology node. J Semicond 41(6):061401

    Article  CAS  Google Scholar 

  16. Radosavljević M, Appenzeller J, Avouris P h, Knoch J (2004) High performance of potassium n-doped carbon nanotube field-effect transistors. Appl Phys Lett 84(18):3693–3695

    Article  Google Scholar 

  17. Kim BM, Brintlinger T, Cobas E, Fuhrer MS, Zheng H, Yu Z, Droopad R, Ramdani J, Eisenbeiser K (2004) High-performance carbon nanotube transistors on srtio 3/si substrates. Appl Phys Lett 84(11):1946–1948

    Article  CAS  Google Scholar 

  18. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424(6949):654–657

    Article  CAS  Google Scholar 

  19. Martel R, Derycke V, Lavoie C, Appenzeller J, Chan KK, Tersoff J, Avouris P h (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87(25):256805

    Article  CAS  Google Scholar 

  20. Heinze S, Tersoff J, Avouris P h (2003) Electrostatic engineering of nanotube transistors for improved performance. Appl Phys Lett 83(24):5038–5040

    Article  CAS  Google Scholar 

  21. Kumar A, Srivastava S, Saxena S, Tripathi SL (2020) (ba/pb) x sr 1- x tio 3 based capacitive sensor with lanio 3 electrode for higher tunability. J Mater Sci: Mater Electron 31(22):20387–20399

    Google Scholar 

  22. John DL, Castro LC, Pereira PJS, Pulfrey DL (2004) A schrödinger-poisson solver for modeling carbon nanotube fets. In: Proc. NSTI Nanotech, vol 3, pp 65–68

  23. Appenzeller J, Radosavljević M, Knoch J, Avouris P h (2004) Tunneling versus thermionic emission in one-dimensional semiconductors. Phys Rev Lett 92(4):048301

    Article  CAS  Google Scholar 

  24. Léonard F, Tersoff J (2002) Dielectric response of semiconducting carbon nanotubes. Appl Phys Lett 81(25):4835– 4837

    Article  Google Scholar 

  25. Datta S (1997) Electronic transport in mesoscopic systems. Cambridge University Press

  26. MINIMOS-NT Iμ E (2004) 2.1 user’s guide, Institut Für Mikroelektronik, Technische Universität Wien, Austria

  27. Ungersbock E, Gehring A, Kosina H, Selberherr S, Cheong B-H, Choi WB (2003) Simulation of carrier transport in carbon nanotube field effect transistors. In: ESSDERC’03. 33rd conference on European solid-state device research, 2003. IEEE, pp 411–414

  28. Radosavljević M, Heinze S, Tersoff J, Avouris P h (2003) Drain voltage scaling in carbon nanotube transistors. Appl Phys Lett 83(12):2435–2437

    Article  Google Scholar 

  29. Clifford J, John DL, Pulfrey DL (2003) Bipolar conduction and drain-induced barrier thinning in carbon nanotube fets. IEEE Trans Nanotechnol 2(3):181–185

    Article  Google Scholar 

  30. Assiri AS, Hussien AG, Amin M (2020) Ant lion optimization: variants, hybrids, and applications. IEEE Access 8:77746– 77764

    Article  Google Scholar 

  31. Pourfath M, Ungersboeck E, Gehring A, Cheong B -H, Park W -J, Kosina H, Selberherr S (2005) Optimization of Schottky barrier carbon nanotube field effect transistors. Microelectron Eng 81(2-4):428–433

    Article  CAS  Google Scholar 

  32. Lee JU, Gipp PP, Heller CM (2004) Carbon nanotube p-n junction diodes. Appl Phys Lett 85(1):145–147

    Article  CAS  Google Scholar 

  33. Kumar G, Agrawal S (2021) Ant lion optimizer for suppression of ambipolar conduction in Schottky barrier carbon nanotube field effect transistors. Silicon, 1–9

Download references

Acknowledgements

It is not applicable for this manuscript.

Funding

The authors did not receive support from any organization for the submitted work. No financial support from any institution or authors.

Author information

Authors and Affiliations

Authors

Contributions

Both the authors have equal contributions in formulating the problems and getting the solution.

Corresponding author

Correspondence to Gagnesh Kumar.

Ethics declarations

Ethics approval and consent to participate

It is not applicable for this manuscript.

Research involving Human Participants and Animals

It is not applicable for this manuscript. No research involving animals. No research involving humans as subjects.

Consent for Publication

It is not applicable for this manuscript.

Competing interests

The authors declare that they have no competing interests.

Conflict of Interests

It is not applicable for this manuscript. No conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, G., Agrawal, S. Suppression of Ambipolar Current in Enhanced Gate Based Schottky Barrier CNTFET Using Ant Lion Optimization. Silicon 14, 11531–11537 (2022). https://doi.org/10.1007/s12633-022-01807-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-022-01807-3

Keywords

Navigation