Skip to main content

Advertisement

Log in

Mechanical and Tribological Properties of 3D printed Al-Si alloys and composites: a Review

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Aluminum alloys were used in engineering applications, such as aircraft, aerospace, automobiles, and various other fields due to being light-weight, have relatively high strength, retain good ductility at sub-zero temperatures, have high corrosion resistance, and are non-toxic. Three-dimensional printing was used for the fabrication of aluminum alloys and aluminum metal matrix composites with high precision, shorter lead time, cost-effectiveness compared to traditional manufacturing. In the 3D printing process, Al-Si alloys and composites were produced by using powder-based manufacturing techniques, such as Selective Laser Melting (SLM), Laser Powder Bed Fusion (LPBF), and Direct Metal Laser Sintering (DMLS) due to their higher laser absorption. The mechanical properties of built parts were improved compared to the traditional manufacturing process and some drawbacks in surface finishing, dimensional accuracy. The mechanical and tribological properties of 3D printing Al-Si alloys were dependent upon process and process parameters. Pre and post-processing methods were used to improve the mechanical and tribological properties. In this paper, an attempt has been made to review the mechanical and tribological properties of 3D printing Al-Si alloys and their composites in various additive manufacturing processes with varying process parameters and to review the effect of pre and post-processing methods on mechanical and tribological properties of 3D printing Al-Si alloys and their composites before and after pre and post-processing methods. The mechanical properties of Al-Si alloys produced in 3D printing methods were more compared to the conventional manufacturing methods. The ductility of the 3D printed Al-Si alloys were improved in heat treatment methods, such as hot isostatic pressing, annealing, and solution heat treatment methods. The 3D printing methods were successfully used for manufacturing Al-Si metal matrix components. The wear resistance of the 3D printed Al-Si metal matrix components were more compared to the conventional manufacturing Al-Si metal matrix components.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

This article is a review article. All Reference papers are available.

References

  1. Hull, C.W., Apparatus for production of three-dimensional objects by stereo lithography. Google Patents, (1986)

  2. C. Brecher, Integrative Production stechnikfürHochlohnländer, Springer, (20011) 1781

  3. Emmelmann C, Kranz J, Herzog D, Wycisk E (2014) Laser additive manufacturing of metals. In: Schmidt V, Belegratis MR (eds) Latest technology in biomimetics. Springer, Heidelberg, pp 143–162

  4. Zhang S, Wei QS, Cheng LY, Li S, Shi YS (2014) Effects of scan line spacing on pore characteristics and mechanical properties of porous Ti6Al4V implants fabricated by selective laser melting. Mater Des 63:185–193

    Article  CAS  Google Scholar 

  5. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(2012):1147–1155

    Article  Google Scholar 

  6. Chen F, Wu J-M, Wu H-Q, Chen Y, Li C-H, Shi Y-S (2018) Microstructure and mechanical properties of 3Y-TZP dental ceramics fabricated by selective lasersintering combined with cold isostatic pressing. Int J Lightweight Mater Manuf 1:239–245

    Google Scholar 

  7. Qiu Z, Yao C, Feng K, Li Z, Chu PK (2018) Cryogenic deformation mechanism of CrMnFeCoNi high-entropy alloy fabricated by laser additive manufacturing process. Int J Lightweight Mater Manuf 1:33–39

    Google Scholar 

  8. Ma Z, Lin J, Xu X, Ma Z, Tang L, Sun C, Li D, Liu C, Zhong Y, Wang L (2019) Design and 3D printing of adjustable modulus porous structures for customized diabetic foot insoles. Int J Lightweight Mater Manuf 2(1):57–63

    Google Scholar 

  9. K.A. Al-Ghamdi, Sustainable FDM additive manufacturing of ABS components with emphasis on energy minimized and time efficient lightweight construction, Int. J. Lightweight Mater. Manuf. .2(4) (2019) 338-345

  10. Atzeni E, Iuliano L, MInetola P, Salmi A (2010) Redesign and cost estimation of rapid manufactured plastic parts. Rapid Prototyp J 16(5):308–317

    Article  Google Scholar 

  11. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9-12):1147–1155

    Article  Google Scholar 

  12. Mellor S, Hao L, Zhang D (2014) Additive manufacturing: A framework for implementation. Int J Prod Econ 149:194–201

    Article  Google Scholar 

  13. D. Herzog, V. Seyda, E. Wycisk, C. Emmelmann, additive manufacturing of metals, Acta Mater. 117 (2016) 371–392

  14. Tolosa I, Garciandía F, Zubiri F (2010) Study of mechanical properties of AISI 316 stainless steel processed by "selective laser melting", following different manufacturing strategies. Int J Adv Manuf Technol 51(5–9):639–647

    Article  Google Scholar 

  15. K. Guan, Z. Wang, M. Gao, X. Li, X. Zeng, Effects of processing parameters on tensile properties of selective laser melted 304 stainless steel, Mater. Des. 50 (2013)581–586.

  16. Vrancken B, Thijs L, Kruth J-P, Van Humbeeck J (2012) Heat treatment of Ti6Al4V produced by Selective Laser Melting: microstructure and mechanical properties. JAlloy Compd 541(15):177–185

    Article  CAS  Google Scholar 

  17. X. Gong, T. Anderson, K. Chou, A study of the microstructural evolution during selective laser melting of Ti-6Al-4V, Acta materialia.58(9) (2010) 3303-3312

  18. Jia Q, Gu D (2014) Selective laser melting additive manufacturing of Inconel 718 super alloy parts: densification, microstructure and properties. J Alloys Compd 585:713–721

    Article  CAS  Google Scholar 

  19. Kanagarajah P, Brenne F, Niendorf T, Maier H (2013) Inconel 939 processed by selective laser melting: Effect of microstructure and temperature on the mechanical properties under static and cyclic loading. Mater Sci Eng A 588:188–195

    Article  CAS  Google Scholar 

  20. Kumar S, Pityana S (2011) Laser-based additive manufacturing of metals. Adv Mater Res 227:92–95

    Article  Google Scholar 

  21. Kumar S. Selective Laser Sintering: Recent Advances. In: 4th Pacific International Conference on Applications of Lasers and Optics. Wuhan-China, 617(2010).

  22. Khan M, Dickens PM (2008) Processing parameters for Selective Laser Melting (SLM) of gold. In: Proceedings of Solid Freeform Fabrication symposium:278–279

  23. Louvis E, Fox P, Sutcliffe C (2011) Selective laser melting of aluminum components. J Mater Process Technol 211(2):275–284

    Article  CAS  Google Scholar 

  24. Thijs L, Kempen K, Kruth J-P, Humbeeck JV (2013) Fine-structured aluminum products with controllable texture by selective laser melting of pre-alloyed AlSi10Mgpowder. Acta Mater 61:1809–1819

    Article  CAS  Google Scholar 

  25. Aboulkhair NT, Everitt N, Ashcroft I, Tuck C (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. Addit Manuf 1:77–86

    Google Scholar 

  26. Kumar S, Kruth JP (2010) Composites by rapid prototyping technology. Mater Des 31(2):850–856

    Article  CAS  Google Scholar 

  27. Ghosh SK, Saha P, Kishore S (2010) Influence of size and volume fraction of SiC particulates on properties of ex situ reinforced Al-4.5Cu-3Mg metal matrix composite prepared by direct metal laser sintering process. Mater. Sci. Eng. A 527(18–19):4694–4701

    Google Scholar 

  28. Vaezi M, Chianrabutra S, Mellor B, Yang S (2013) Multiple material additive manufacturing, Part1: a review. Virtual and Phys Prototype 8:19–50

    Article  Google Scholar 

  29. Herderick E (2015) Progress in additive manufacturing. J Mater 67:580–581

    Google Scholar 

  30. V. Matilainen, H. Piili, A. Salminen, T. Syvänen, O. Nyrhilä, Characterization of Process Efficiency Improvement in Laser Additive Manufacturing, Phys Procedia 56(0) (2014) 317-326.

  31. B.P. Conner, G.P. Manogharan, A.N. Martof, L.M. Rodomsky, C.M. Rodomsky, D.C. Jordan,J.W. Limperos, Making sense of 3-D printing: Creating a map of additive manufacturing products andservices, Additive Manufacturing 1–4(0) (2014) 64-76

  32. Wang X, Xu S, Zhou S, Xu W, Leary M, Choong P, Qian M, Brandt M, Xie Y (2016) Topological design and additive manufacturing of porous metals for bone scaffolds and orthopedic implants: a review. Biomaterials 83:127–141

    Article  CAS  PubMed  Google Scholar 

  33. Murr LE (2016) Frontiers of 3D printing/additive manufacturing: from human organs to aircraft fabrication. J Mater Sci Technol 32:987–995

    Article  Google Scholar 

  34. Sing S, An J, Yeong W, Wiria F (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. JOrthop Res 34(3):369–385

    Article  CAS  Google Scholar 

  35. Yap C, Chua C, Dong Z, Liu Z, Zhang D, Loh L, Sing S (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2(4):041101

    Article  CAS  Google Scholar 

  36. Tofail S, Koumoulos E, Bandyopadhyay A, Bose S, O’Donoghue L, Charitidis C (2018) Additive manufacturing: scientific and technological challenges, market uptake and opportunities. Mater Today 21(1):22–37

    Article  Google Scholar 

  37. Atzeni E, Salmi A (2012) Economics of additive manufacturing for end-usable metal parts. Int J Adv Manuf Technol 62(9–12):1147–1155

    Article  Google Scholar 

  38. Schwab K (2017) The Fourth Industrial Revolution. Crown Business, New York, NY, USA

  39. Wohlers Associates Inc, Wohlers report—3D printing and additive manufacturing state of the industry, in: Annual Worldwide Progress Report2016, Wohlers Associates Inc., Fort Collins, Colorado, 2016

  40. R. L. Deuis; C. Subramanian” & J. M. Yellupb, Dry sliding Wear of Aluminium Composites-A Review,Composite and science and technology.57(4)(1997)415-435

  41. Kempen K, Thijs L, Humbeeck JV, Kruth JP (2015) Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization. Mater Sci Technol 31:917–923

    Article  CAS  Google Scholar 

  42. Martin JH, Yahata BD, Hundley JM, Mayer JA, Schaedler TA, Pollock TM (2017) 3D printing of high-strengthaluminium alloys. Nature. 549:365–369

    Article  CAS  PubMed  Google Scholar 

  43. Jung JG, Ahn TY, Cho YH, Kim SH, Lee JM (2018) Synergistic effect of ultrasonic melt treatment and fast cooling on the refinement of primary Si in a hypereutectic Al–Si alloy. Acta Mater 144:31–40

    Article  CAS  Google Scholar 

  44. Jung JG, Lee SH, Cho YH, Yoon WH, Ahn TY, Ahn YS, Lee JM (2017) Effect of transition elements on the microstructure and tensile properties of Al–12Si alloy cast under ultrasonic melt treatment. J Alloys Compd 712:277–287

    Article  CAS  Google Scholar 

  45. Reddappa H. N, Suresh K. R, Niranjan H. B, Satyanarayana K. G, Dry sliding friction and wear behavior of Aluminium/Beryl composites, International Journal of Applied Reseach,Dindigul,2(2) (2011 )502-511.

  46. Cáceres CH, Davidson CJ, Griffiths JR (1995) The deformation and fracture behavior of an Al-Si- Mg casting alloy. Mater Sci Eng A 197(1995):171–179

    Article  Google Scholar 

  47. Kruth JP et al (2007) Consolidation phenomena in laser and powder-bed based layered manufacturing. CIRP Ann Manuf Technol 56(2):730–759

    Article  Google Scholar 

  48. Kruth, J.P., et al.: Benchmarking of different SLS/SLM processes as rapid manufacturing techniques. In: International Conference on Polymers and Moulds Innovations (PMI), Gent, Belgium.(2005)1-7

  49. Sercombe TB, Li X (2016) Selective laser melting of aluminium and aluminium metal matrix composites: review. Mater Technol 31(2):77–85

    CAS  Google Scholar 

  50. Mukherjee T, Wei HL, De A, DebRoy T (2018) Heat and fluid flow in additive manufacturing – Part II: Powder bed fusion of stainless steel, and titanium, nickel and aluminum base alloys. Comput Mater Sci 150:369–380

    Article  CAS  Google Scholar 

  51. Dong-GyuAhn, Direct Metal Additive Manufacturing Processes and Their Sustainable Applications for Green Technology: A Review, international journal of precision engineering and manufacturing-green technology. 3 (2016)381-395

  52. F. R. Kaschel, M. Celikin, D.P. Dowling,Effects of laser power on geometry, microstructure and echanical properties of printed Ti-6Al-4V parts, Journal of Materials Processing Technology.(278)(2020) 116539

  53. Wang L, Dong C, Kong D, Man C, Liang J, Wang C, Li X (2019) The Effect of Manufacturing Parameters on the Mechanical and Corrosion Behavior of Selective Laser Melted 15-5PH Stainless Steel. Steel Research International 1900447

  54. Hahn Choo, Kin-Ling Sham, John Bohling, Austin Ngo, Xianghui Xiao, Yang Ren, Philip J. Depond, Manyalibo J. Matthews, Elena Garlea,Effect of laser power on defect, texture, and microstructure of a laser powder bed fusion processed 316L stainless steel, Materials& Design.164(2019)107534

  55. Reza Esmaeilizadeh, Ali Keshavarzkermani, Usman Ali, Behzad Behravesh, Ali Bonakdar, Hamid Jahed, Ehsan Toyserkani, On the effect of laser powder-bed fusion process parameters on quasi-static and fatigue behaviour of Hastelloy X: A microstructure/defect interaction study, Additive Manufacturing.38(2021) 101805

  56. Pan Lu, Zhang Cheng-Lin, Wang Liang, Liu Tongand Li Xiao-Cheng, Research on mechanical properties and microstructure by selective laser melting of 316L stainless steel, Materials Research Express.6(12) (2019) 1265h7

  57. AbanLarimian, Manigandan Kannan, Dariusz Grzesiak, Bandar AlMangour, Tushar Borkar,Effect of energy density and scanning strategy on densification, microstructure and mechanical properties of 316L stainless steel processed via selective laser melting, Materials Science and Engineering: A.770(2020)138455

  58. Ilyas Hacısalihoğlu, FatihYıldiz, AyhanÇelik,The effects of build orientation and hatch spacing on mechanical properties of medical Ti–6Al–4V alloy manufactured by selective laser melting, Materials Science and Engineering: A .802(2021) 140649

  59. Alexander Leicht, Camille Pauzon, Masoud Rashidi, Uta Klement, Lars Nyborg, Eduard Hryha,Effect of part thickness on the microstructure and tensile properties of 316L parts produced by laser powder bed fusion, Advances in Industrial and Manufacturing Engineering,.2(2021)100037

  60. Gan L, Cheng Guo, Wenfeng Guo, Hongxing Lu, LinjuWen,Xiaogang Hu and Qiang Zhu, Influence of Selective Laser Melting Process Parameters on Densification Behavior, Surface Quality and Hardness of 18Ni300 Steel, Key Engineering Materials,861(2020) 77-82

  61. Bhishek Mehta, Le Zhou, Thinh Huynh, Sharon Park, Holden Hyer, Shutao Song, Yuanli Bai, D. Devin Imholte, Nicolas E. Woolstenhulme, Daniel M. Wachs, YonghoSohn,Additive manufacturing and mechanical properties of the dense and crack free Zr-modified aluminum alloy 6061 fabricated by the laser-powder bed fusion, Additive Manufacturing..41 (2021) 101966

  62. Zhiheng Hu, Yang Qi, Shubo Gao, XiaojiaNie, Hu Zhang, Haihong Zhu, XiaoyanZeng,Aging responses of an Al-Cu alloy fabricated by selective laser melting, Additive Manufacturing37 (2021) 101635

  63. Cerri E, Ghio E, Bolelli G (2021) Effect of the Distance from Build Platform and Post-Heat Treatment of AlSi10Mg Alloy Manufactured by Single- and Multi-Laser Selective Laser Melting. J of MateriEng and Perform

  64. Peidong He, Hui Kong, Qian Liu, Michael Ferry, Jamie J. Kruzic, XiaopengLi,Elevated temperature mechanical properties of TiCN reinforced AlSi10Mg fabricated by laser powder bed fusion additive manufacturing, Materials Science and Engineering: A.811(2021) 141025

  65. Anton S. Konopatsky, Dmitry G. Kvashnin, Shakti Corthay, Ivan Boyarintsev, Konstantin L. Firestein, Anton Orekhov, Natalya Arkharova, Dmitry V. Golberg, Dmitry V. Shtansky,Microstructure evolution during AlSi10Mg molten alloy/BN microflake interactions in metal matrix composites obtained through 3D printing, Journal of Alloys and Compounds,Volume .859 (2021) 157765

  66. Pelevin IA, Nalivaiko AY, Ozherelkov DY, Shinkaryov AS, Chernyshikhin SV, Arnautov AN, Zmanovsky SV, Gromov AA (2021) Selective Laser Melting of Al-Based Matrix Composites with Al2O3 Reinforcement: Features and Advantages. Materials. 14:2648

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Astm, Iso. "ASTM52900-15 standard terminology for additive manufacturing—general principles—terminology." ASTM International, West Conshohocken, PA. 3(4) (2015) 5.

  68. ASTM F2792-12a: Standard Terminology for Additive Manufacturing Technologies,(2012)

  69. Frazier WE (2014) Metal additive manufacturing: A review. J Mater Eng Perform 23:1917–1928

    Article  CAS  Google Scholar 

  70. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392

    Article  CAS  Google Scholar 

  71. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315–360

    Article  CAS  Google Scholar 

  72. Dutta B, Froes FH (2014) Additive manufacturing of titanium alloys. Adv Mater Process 172:18–23

    CAS  Google Scholar 

  73. Calignano F, Manfredi D, Ambrosio EP, Iuliano L, Fino P (2013) Influence of process parameters on surface roughness of aluminium parts produced by DMLS. Int J Adv Manuf Technol 67(9–12):2743–2751

    Article  Google Scholar 

  74. G.P. Dinda, A.K. Dasgupta, J. Mazumder, Evolution of microstructure in laser deposited Al-11.28%Si alloy, Surf. Coat. Technol. 206 (2012) 2152–2160,

  75. Dinda GP, Dasgupta AK, Bhattacharya S, Natu H, Dutta B, Mazumder J (2013) Microstructural characterization of laser-deposited Al 4047 alloy. Metall Mater Trans A Phys Metall Mater Sci 44:2233–2242

    Article  CAS  Google Scholar 

  76. A. Singh, A. Ramakrishnan, G.P. Dinda, in: Direct laser metal deposition of eutectic Al-Si alloy for automotive applications, TMS 2017 146th Annual Meeting & Exhibition Supplemental Proceedings, 2017

  77. F.A. Espan˜ a, V.K. Balla, A. Bandyopadhyay, Laser processing of bulk Al–12Si alloy: influence of microstructure on thermal properties, Philos. Mag. 91 (2011) 574–588

  78. Yap CY, Chua CK, Dong ZL, Liu ZH, Zhang DQ, Loh LE, Sing SL (2015) Review of selective laser melting: materials and applications. Appl Phys Rev 2:041101

    Article  CAS  Google Scholar 

  79. Wohlers T (2014) Wohlers Report : 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report. Fort Collins, WohlersAssociatesInc.

  80. Kruth JP, Mercelis P, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:25–36

    Article  Google Scholar 

  81. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/ melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477

    Article  CAS  Google Scholar 

  82. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164

    Article  CAS  Google Scholar 

  83. https://www.eos.imaging.com

  84. https://www.trumpf.com

  85. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392

    Article  CAS  Google Scholar 

  86. Aboulkhair NT, Everitt NM, Ashcroft I, et al. Reducing porosity in AlSi10Mg parts processed by selective laser melting. Additive Manufacturing .(1–4) (2014)77–86.

  87. Aboulkhair NT, Maskery I, Tuck C, et al. Improving the fatigue behavior of a selectively laser melted aluminium alloy: influence of heat treatment and surface quality. Mater Des;104(2016) 174–82.

  88. Martin JH, Yahata BD, Hundley JM, et al. 3D printing of high-strength aluminium alloys. Nature .549(7672)(2017)365.

  89. Calignano F. Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys Prototyping .13(2)(2018)97-104

  90. Sing S, An J, Yeong W et al (2016) Laser and electron-beam powder-bed additive manufacturing of metallic implants: a review on processes, materials and designs. J Orthop Res 34(3):369–385

    Article  CAS  PubMed  Google Scholar 

  91. Yin, H. &Felicelli, S. D. Dendrite growth simulation during solidification in the LENS process. Acta Materialia58(4)( (2010). 1455-1465.

  92. Amano RS, Rohatgi PK (2011) Laser engineered net shaping process for SAE 4140 low alloy steel. Mater Sci Eng A 528(22-23):6680–6693

    Article  CAS  Google Scholar 

  93. Bian, L., Thompson, S. M. &Shamsaei, N.. Mechanical Properties and Micro structural Features of Direct Laser-Deposited Ti-6Al-4V.Jom67(3)(2015)629-638.

  94. Gåård, A., Krakhmalev, P., and Bergström, J.. Microstructural characterization and wear behavior of (Fe,Ni)–TiC MMC prepared by DMLS. Journal of Alloys and Compounds, 421, (2016)166–171.

  95. Jhabvala J et al (2010) On the effect of scanning strategies in the Selective Laser Melting process. Virtual and Physical Prototyping 5:99–109

    Article  Google Scholar 

  96. Yasa E et al (2010) Charpy impact testing of metallic Selective Laser Melting parts. Virtual and Physical Prototyping 5:89–98

    Article  Google Scholar 

  97. Bhattacharya S et al (2011) Micro structural evolution and mechanical, and corrosion property evaluation of Cu–30Ni alloy formed by Direct Metal Deposition process. J Alloys Compd 509:6364–6373

    Article  CAS  Google Scholar 

  98. Delgado J, Ciurana J, Serenó L (2011) Comparison of forming manufacturing processes and Selective Laser Melting technology based on the mechanical properties of products. Virtual and Physical Prototyping 6:167–178

    Article  Google Scholar 

  99. Yang T, Liu T, Liao W, MacDonald E, Wei H, Chen X, Jiang L (2019) The influence of process parameters on vertical surface roughness of the AlSi10Mg parts fabricated by selective laser melting. J Mater Process Technol 266:26–36

    Article  CAS  Google Scholar 

  100. R. Lachmayer, Y. A. Zghair, C. Klose and F. Nürnberger, introducing selective laser melting to manufacture machine elements, international design conference - design .(2016) 831-842

  101. T. G Spears,.A. Gold, In-procress sensing in selective laser melting (SLM) additive manufacturing, Integrating materials and Manufacturing Innovation .5 (2016) 16-40

  102. H. Asgari, C. Baxter, K. Hosseinkhani, M. Mohammadi, On microstructure and mechanical properties of additively manufactured AlSi10Mg 200C usingrecycled powder, Mater. Sci. Eng.: A 707 (2017) 148–158.

  103. E.O. Olakanmi, R.F. Cochrane, K.W. Dalgarno, A review on selective laser sintering/melting (SLS/SLM) of aluminium alloy powders: processing,microstructure, and properties, Prog Mater Sci 74 (2015) 401–477.

  104. Bin Anwar A, Cuong Pham Q (2017) Selective laser melting of AlSi10Mg: effects of scan direction, part placement and inert gas flow velocity on tensile strength. J Mater Process Technol 240:388–396

    Article  CAS  Google Scholar 

  105. Trevisan F et al (2017) On the selective laser melting (SLM) of the AlSi10Mg alloy: process, microstructure, and mechanical properties. Materials 10:76

    Article  PubMed Central  CAS  Google Scholar 

  106. Krishnan M et al (2014) On the effect of process parameters on properties ofAlSi10Mg parts produced by DMLS. Rapid Prototyp J 20:449–458

    Article  Google Scholar 

  107. Kempen K, Thijs L, Van Humbeeck J, Kruth J-P (2015) Processing AlSi10Mg by selective laser melting: parameter optimization and material characterization. Mater Sci Technol 31:917–923

    Article  CAS  Google Scholar 

  108. Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mgalloy: process optimization and mechanical properties development. Mater.Des. 65:417–424

    Article  CAS  Google Scholar 

  109. Arfan Majeed, Yingfeng Zhang, JingxiangLv, Tao Peng, Zahid Atta, Altaf Ahmed, Investigation of T4 and T6 heat treatment influences on relative density and porosity of AlSi10Mg alloy components manufactured by SLM,Computers& Industrial Engineering.139(2020) 106194 .

  110. Yasa, E., Kruth, J.-P.: Application of laser re-melting on selective laser melting parts. Additive .Prod. Eng. Manag. 6(4) (2011) 259–270

  111. Monroy K, Delgado J, Ciurana J (2013) Study of the pore formation on CoCrMo alloys by selective laser melting manufacturing process. Procedia Eng 63:361–369

    Article  CAS  Google Scholar 

  112. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. Journal ofMaterials Processing Technology 211:275–284

    Article  CAS  Google Scholar 

  113. K. Kempen, L. Thijs, E. Yasa, M. Badrossamay, W; Verheecke, J.P. Kruth, Process optimization and micro structural analysis for selective laser melting of AlSi10Mg, International Solid Freeform fabrication Symposium 22 (2011) 484-449

  114. Quintino L, Miranda R, Dilthey U, Iordachescu D, Banasik M, Stano S (2012) Laser Welding of Structural Aluminium. Adv Struct Mater 8:33–57

    Article  Google Scholar 

  115. Arata Y, Miyamoto I (1972) Some fundamental properties of high power laser beam as a heat source (report 2) – CO2 laser absorption characteristics of metal. Transactions of the Japan Welding Society 3:152–162

    Google Scholar 

  116. ASM specialty handbook, Aluminium and aluminium alloys, sixth printing, (2007)720

  117. Saket Thapliyal, MageshwariKomarasamy, Shivakant Shukla, Le Zhou, Holden Hyer, Sharon Park, Yongho Sohn, Rajiv S. Mishra, An integrated computational materials engineering-anchored closed-loop method for design of aluminum alloys for additive manufacturing, Materialia,9(2020)100574.

  118. Kumar S (2014) Selective laser sintering/melting. In: Hashmi S (ed) Comprehensive Materials Processing. Elsevier, Amsterdam, pp 93–133

  119. Emmelmann C, Sander P, Kranz J, Wysick E (2011) Laser additive manufacturing and bionics. Phys Procedia 12:364–368

    Article  Google Scholar 

  120. Gibson I, Rosen DW, Stucker B (2015) Additive Manufacturing Technologies, Rapid Prototyping to Direct Digital Manufacturing. Springer, Verlag, New York 2015

  121. Ardila, L.C., Garciandia, F., González-Díaz, J.B., Álvarez, P., Echeverria, A., Petite,M.M., Deffley, R., Ochoaa, J.,. Effect of IN718 recycled powder reuse on properties of parts manufactured by means of selective laser melting. Phys Procedia 56 (2014) 99–107.

  122. Lishi Jiao , Zhong Yang Chua , Seung Ki Moon , Jie Song , Guijun Bi and Hongyu Zheng, Femtosecond Laser Produced Hydrophobic Hierarchical Structures on Additive Manufacturing Parts, Nonmaterial’s.8(8)(2018)601

  123. Khaing MW, Fuh JYH, Lu L (2001) Direct Metal Laser Sintering for rapid tooling: Processing andcharacterization of EOS parts. J Mater Process Technol 113:269–272

    Article  CAS  Google Scholar 

  124. https://www.eos.info/en

  125. Wohlers, T. T. and Caffrey, T., Wohlers Report : 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report,” Wohlers Associates.(2015).

  126. http://www.eos.info/systems_solutions/metal

  127. Kruth, J. P., Mercelis, P., Froyen, L., and Rombouts, M., Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting.11(1)(2005)26-36

  128. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg: the effect of a conventional T6-like heat treatment. Mater Sci Eng A 66:139–146

    Article  CAS  Google Scholar 

  129. Wohlers, T. T. and Caffrey, T., Wohlers Report : 3D Printing and Additive Manufacturing State of the Industry Annual Worldwide Progress Report,” Wohlers Associates.(2015).

  130. Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modeling and prediction in selective laser melting. J Mater Process Technol 213(4):589–597

    Article  CAS  Google Scholar 

  131. Atzeni, E., Salmi, A., Incontro, M., A DoE approach for evaluating the quality of self supporting faces in DMLS, in 4th International Conference on Additive Technologies (iCAT 2012).(2012)

  132. Calignano F, Manfredi D, Ambrosio EP, Iuliano L, Fino P (2013) Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67:27432751

    Article  Google Scholar 

  133. https://www.custompartnet.com/

  134. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117(2016):371–392

    Article  CAS  Google Scholar 

  135. Lewandowski JJ, Seifi M (2016). Annu Rev Mater Res 46:151–186

    Article  CAS  Google Scholar 

  136. Everton SK, Hirsch M, Stravroulakis P, Leach RK, Clare AT (2016) Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing. Mater Des 95:431–445

    Article  CAS  Google Scholar 

  137. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – Process, structure and properties. Prog Mater Sci 92:112–224

    Article  CAS  Google Scholar 

  138. Tapia, G.; Elwany, A. A review on process monitoring and control in metal-based additive manufacturing’s. Manuf. Sci. E .136(2014) 060801.

  139. Mower, T.M.; Long, M.J. Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater. Sci. Eng. A .651(2016) 198–213

  140. Kimura T, Nakamoto T (2017) Thermal and mechanical properties of commercial-purity aluminium fabricated using selective laser melting. Mater Trans 58:799–805

    Article  CAS  Google Scholar 

  141. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturingof metals. Acta Mater 157:371–392

    Article  CAS  Google Scholar 

  142. Wohlers Report, Additive Manufacturing and 3D Printing State on the industry, Wohlers Associates, Fort Collins, Colorado, ICED15.12(2013)

  143. Petroušek P, Bidulská J, Bidulský R, Kocisko R, Fedorikova A, Hudak R, Rajtukova V, Zivcak J (2017) Mechanical properties and porosity of Ti-6Al-4V alloy prepared by AM technology. MM Science Journal:1752–1755

  144. AlicaFedorikova, Radovan Hudak,,Jozefzivcak, Robert bidulsky, PatrikPetrousek, Jana Bidulska1,Robert Kocisko1,Viktoria Rajtukova, Mechanical properties of powder cocrw-alloy prepared by am technology. ,MM Science Journal, (2016)1586-1589

  145. Hamidi Nasab M, Gastaldi D, Lecis NF, Vedani M (2018) On morphological surface features of the parts printed by selective laser melting (SLM). Addit Manuf 24:373–377

    Google Scholar 

  146. Yadroitsev I, Smurov I (2011) Surface morphology in selective laser melting of metal powders, in: Physics. Procedia.

  147. Townsend A, Senin N, Blunt L, Leach RK, Taylor JS (2016) Surface texture metrology for metal additive manufacturing: a review. Precis Eng 46:34–47

    Article  Google Scholar 

  148. J.S. Taylor, Physical processes linking input parameters and surface morphology in additivemanufacturing, in: Proc. - ASPE 2015 Spring Top. Meet. Achiev. Precis. Toler.Addit. Manuf.(2015) 70-71.

  149. L. zhi Wang, S. Wang, J. jiao Wu, Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting, Opt. Laser Technol. 96 (2017) 88–96.

  150. Mumtaz K, Hopkinson N (2009) Top surface and side roughness of Inconel 625 parts processed using selective laser melting. Rapid Prototyp J 15:96–103

    Article  Google Scholar 

  151. Strano G, Hao L, Everson RM, Evans KE (2013) Surface roughness analysis, modeling and prediction in selective laser melting. J Mater Process Technol 213:589–597

    Article  CAS  Google Scholar 

  152. J.C. Fox, S.P. Moylan, B.M. Lane, Effect of Process Parameters on the Surface Roughness of Overhanging Structures in Laser Powder Bed Fusion Additive Manufacturing, in: Procedia.45(2016)131-134

  153. Manfredi D et al (2014) Additive manufacturing of Al alloys and Aluminium Matrix Composites (AMCs), in: Light Metal Alloys Applications, edited by W. A Monteiro

  154. Kruth JP, Mercelis P, Van Vaerenbergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyp J 11:26–36

    Article  Google Scholar 

  155. Niu HJ, Chang ITH (2000) Selective laser sintering of gas atomized M2 high speed steel powder. J Mater Sci 35:31–38

    Article  CAS  Google Scholar 

  156. Manfredi D et al (2013) From powders to dense metal parts: characterization of commercial AlSiMg alloy processed through direct metal laser sintering. Materials 6:856–869

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. https://www.bintoa.com/powder-bed-fusion/

  158. Buchbinder D, Schleifenbaum H, Heidrich S, Meiners W, Bültmann J (2011) High power Selective Laser Melting (HP SLM) of aluminum parts. Phys Procedia 12:271–280

    Article  CAS  Google Scholar 

  159. Read N, Wang W, Essa K, Attallah MM. Selective laser melting of AlSi10Mg alloy: process optimization and mechanical properties development. Mater Des .65(2015)417-424.

  160. Zhang J, Song B, Wei Q, Bourell D, Shi Y (2019) A review of selective laser melting of aluminium alloys: processing, microstructure, property and developing trends. J Mater Sci Technol 35:270e284

    Google Scholar 

  161. R. Li, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, P. Cao, Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: processing, microstructure, and properties, Powder Technol. 319 (2017) 117e128.

  162. Wang M, Song B, Wei Q, Zhang Y, Shi Y (2019) Effects of annealing on the microstructure and mechanical properties of selective laser melted AlSi7Mg alloy. Mater Sci Eng A 739:463e472

    Article  Google Scholar 

  163. R. Li, M. Wang, T. Yuan, B. Song, C. Chen, K. Zhou, P. Cao, Selective laser melting of a novel Sc and Zr modified Al-6.2 Mg alloy: Processing ,microstructure, and properties, Powder Technol. 319 (2017) 117-128.

  164. Rao H, Giet S, Yang K, Wu X, Davies CHJ (2016) The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting. Mater Des 109:334–346

    Article  CAS  Google Scholar 

  165. Bartkowiak K, Ullrich S, Frick T, Schmidt M (2011) New Developments of Laser Processing Aluminium Alloys via Additive Manufacturing Technique. Phys Procedia 12:393–401

    Article  CAS  Google Scholar 

  166. Buchbinder D, Schleifenbaum H, Heidrich S, Meiners W, Bültmann J (2011) High power selective laser melting (HP SLM) of aluminum parts. Phys Procedia 12:271–278

    Article  CAS  Google Scholar 

  167. Li Y, Gu D (2014) Parametric analysis of thermal behavior during selective laser melting additive manufacturing of aluminum alloy powder. Mater Des 63:856–867

    Article  CAS  Google Scholar 

  168. H. Zhang, H. Zhu, X Nie, J Yin, Z Hu, X Zeng, Effect of Zirconium addition on crack, microstructure and mechanical behavior of selective laser melted Al-Cu-Mg alloy, Script Materialia134 (2017) 6-10

  169. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) On the formation of AlSi10Mg single tracks and layers in selective laser melting: Microstructure and nano-mechanical properties. J Mater Process Technol 230:88–98

    Article  CAS  Google Scholar 

  170. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Process Technol 211:275–284

    Article  CAS  Google Scholar 

  171. Loto CA (2016) Electroless nickel plating – a review. Silicon. 8:177–186

    Article  CAS  Google Scholar 

  172. Tolochko NK, Laoui T, Khlopkov YV, Mozzharov SE, Titov VI, Ignatiev MB (2000) Absorptance of powder materials suitable for laser sintering. Rapid Prototyp J 6:155–160

    Article  Google Scholar 

  173. Fischer P, Romano V, Weber HP, Karapatis NP, Boillat E, Glardon R (2003) Sintering of commercially pure titanium powder with a Nd:YAG laser source. Acta Mater 51:1651–1662

    Article  CAS  Google Scholar 

  174. Lekatou AG, Sfikas AK, Karantzalis AE (2017) The influence of the fabrication route on the microstructure and surface degradation properties of Al reinforced by Al9Co2. Mater Chem Phys 200:33–49

    Article  CAS  Google Scholar 

  175. Huber F, Papke T, Scheitler C, Hanrieder L, Merklein M, Schmidt M (2018) In situ Formation of a Meta stable β-Ti Alloy by Laser Powder Bed Fusion(L-PBF) of Vanadium and Iron Modified Ti-6Al-4V. Metals. 8:1067

    Article  CAS  Google Scholar 

  176. Zhou W, Dong M, Zhou Z, Sun X, Kikuchi K, Nomura N, Kawasaki A (2019) In situ formation of uniformly dispersed Al4C3 nano rods during additive manufacturing of grapheme oxide/Al mixed powders. Carbon. 141:67–75

    Article  CAS  Google Scholar 

  177. Zhou W, Sun X, Kikuchi K, Nomura N, Yoshimi K, Kawasaki A (2018) In situ synthesized Tic/Mo-based composites via laser powder bed fusion. Mater Des 146:116–124

    Article  CAS  Google Scholar 

  178. Yadroitsev I, Krakhmalev P, Yadroitsava I (2017) Titanium alloys manufactured by in situ alloying during laser powder bed fusion. JOM. 69:2725–2730

    Article  CAS  Google Scholar 

  179. Geng K, Yang Y, Li S, Misra RDK, Zhu Q, Enabling high-performance 3D printing of Al powder by decorating with high laser absorbing Co phase, Additive Manufacturing .32(2020)101012

  180. Galy C, Le Guen E, Lacoste E, Arvieu C (2018) Main defects observed in aluminum alloy parts produced by SLM: from causes to consequences. Additive Manufacturing 22:165–175

    Article  CAS  Google Scholar 

  181. Wong M, Tsopanos S, Sutcliffe CJ, Owen I (2017) Selective laser melting of heat transfer devices. Rapid Prototyp J 13:291–297

    Article  Google Scholar 

  182. Takahiro. Kimura, Takayuki Nakamoto, Masataka Mizuno and Hideki Araki, “Effect of silicon content on densification, mechanical and thermal properties of Al-xSi binary alloys fabricated using selective laser meltin, Materials Science & Engineering A.682(13) (2017)593-602

  183. Osório WR, Goulart PR, Garcia A (2008) Effect of silicon content on microstructure and electrochemical behavior of hypoeutectic Al-Si alloys. Mater Lett 62(2008):365–369

    Article  CAS  Google Scholar 

  184. Ponnusamy MSH, Ruan D, Palanisamy S, Rahman RA, Kariem RMA (2018) High strain rate behaviour at high temperature of AlSi12 parts produced by selective laser melting. IOP Conf. Series: Materials Science Eng 377:012167

    Article  Google Scholar 

  185. Rashid R, Masood SH, Ruan D, Palanisamy S, Rahman Rashid RA, Elambasseril J, Brandt M (2018) Effect of energy per layer on the anisotropy of selective laser melted AlSi12 aluminium alloy. Additive Manufacturing 22:426–439

    Article  CAS  Google Scholar 

  186. Vora P, Mumtaz K, Todd I, Hopkinson N (2015) AlSi12 in-situ alloy formation and residual stress reduction using anchorless selective laser melting. Additive Manufacturing 9:7–12

    Google Scholar 

  187. Wang X, Zhang L, Fang M, Sercombe TB (2014) The effect of atmosphere on the structure and properties of a selective laser melted Al–12Si alloy. Mat Sci and Engg: A 597(12):370–375

    Article  CAS  Google Scholar 

  188. Siddique S, Imran M, Wycisk E, Emmelmann C, Walther F (2015) Influence of process-induced microstructure and imperfections on mechanical properties of AlSi12 processed by selective laser melting. J Mat Processing Tech 221:205–213

    Article  CAS  Google Scholar 

  189. Siddique S, Imran M, Walther F (2017) Very high cycle fatigue and fatigue crack propagation behavior of selective laser melted AlSi12 alloy. Int J Fatigue 94:246–254

    Article  CAS  Google Scholar 

  190. Prashanth K, Scudino S, Klauss H, Surreddi KB, Löber L, Wang Z, Chaubey A, Kühn U, Eckert J (2014) Microstructure and mechanical properties of Al–12Si produced by selective laser melting: Effect of heat treatment. Mat Sci Engg: A 590:153–160

    Article  CAS  Google Scholar 

  191. Li X, Wang X, Saunders M, Suvorova A, Zhang L, Liu Y, Fang M, Huang Z, Sercombe TB (2015) A selective laser melting and solution heat treatment refined Al–12Si alloy with a controllable ultrafine eutectic microstructure and 25% tensile ductility. Acta Mater 95:74–82

    Article  CAS  Google Scholar 

  192. Fefelov AS, Merkushev AG, Chikova OA (2017) Microstructure and mechanical properties of Al-12Si produced by selective laser melting. IOP Conf Series: Earth and Environmental Science 87:092011

    Google Scholar 

  193. Jyoti S, Prashanth KG, Scudino S, Eckert J, Prakash O, Ramamurty U (2016) Simultaneous enhancements of strength and toughness in an Al-12Si alloy synthesized using selective laser melting. Acta Mater 115:285–e294

    Article  CAS  Google Scholar 

  194. Louvis E, Fox P, Sutcliffe CJ (2011) Selective laser melting of aluminium components. J Mater Process Technol 211:275–284

    Article  CAS  Google Scholar 

  195. Olakanmi EO, Cochrane RF, Dalgarno KW (2011) Densification mechanism and microstructural evolution in selective laser sintering of Al–12Si powders. J Mater Process Technol 217:113–121

    Article  CAS  Google Scholar 

  196. Li XP, O’Donnell KM, Sercombe TB (2016) Selective laser melting of Al-12Si alloy: Enhanced densification viapowder drying. Additive Manufacturing 10:10–14

    Article  CAS  Google Scholar 

  197. Kang N, Coddet P, Linliao H, Baur T, Coddet C (2016) Wear behavior and microstructure of hypereutectic Al-Si alloys prepared by Selective laser melting. Appl Surf Sci 378:142–149

    Article  CAS  Google Scholar 

  198. Siddique S, Imran M, Rauer M, Kaloudis M, Wycisk E (2015) Computed tomography for characterization of fatigue performance of selective laser melted parts. Mater Des 83:661–669

    Article  Google Scholar 

  199. Prashanth KG, Scudino S, Eckert J (2016) Tensile properties of Al-12Si fabricated via selective laser melting (SLM) at different temperatures. Technologies 4(4):38

    Article  Google Scholar 

  200. Pan M, Prashanth KG, Scudino S, Jia Y, Wang H, Zou C, Wei Z, Eckert J (2014) Influence of annealing on mechanical properties of Al-20Si processed by selective laser melting. Metal 4:2836

    Article  CAS  Google Scholar 

  201. Dörfert R, Stoll C, Freiße H, Seefeld T, Vollertsen F (2017) Influence of the process on surface roughness of 3D-printed aluminum alloy AlSi40 parts. International Journal of Latest Research in Engineering and Technology 3(10):35–41

    Google Scholar 

  202. Mueller M, Riede M, Eberle S, Reutlinger A, Brandão AD, Pambaguian L, Seidel A, López E, Brueckner F, Beyer E, Leyens C (2019) Micro structural, mechanical, and thermo-physical characterization of hypereutectic AlSi40 fabricated by selective laser melting. J Laser Appl 31:022321

    Article  CAS  Google Scholar 

  203. Hanemann T, Carter LN, Habschied M, Adkins NJE, Attallah MM, Heilmaier M (2019) In-situ alloying of AlSi10MgþSi using Selective Laser Melting to control the coefficient of thermal expansion. J Alloys Compd 795:8e18

    Article  CAS  Google Scholar 

  204. ASM Handbook (1990) Volume 2, Properties and Selection: Non ferrous Alloys and Special-Purpose Materials, ASM International, Materials Park, OH

  205. González R, González A, Talamantes-Silva J, Valtierra S, Mercado-Solís RD, Garza-Montes-de-Oca NF, Colás R (2013) Fatigue of an aluminium cast alloy used in the manufacture of automotive engine blocks. Int J Fatigue 54(0):118–126

    Article  CAS  Google Scholar 

  206. Zebala W, Kowalczyk R, Matras A (2015) Analysis and optimization of sintered carbides turning with PCD tools. Procedia Eng 100:283–290

    Article  CAS  Google Scholar 

  207. Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mg alloy: Process optimisation and mechanical properties development. Mater Des 65:417–424

    Article  CAS  Google Scholar 

  208. Godino Martinez M (2013) AlSi10Mg parts produced by selective laser melting (SLM) (masters). Universidad Carlos III de Madrid

  209. Santos MC, Machado AR, Sales WF, Barrozo M, Ezugwu EO (2016) Machining of aluminium: a review. Int J Adv Manuf Technol 86:3067–3080

    Article  Google Scholar 

  210. Buchbinder D, Schleifenbaum H, Heidrich S, Meiners W, Bültmann J (2011) High power Selective Laser Melting (HP SLM) of aluminum parts. Phys Procedia 12:271–280

    Article  CAS  Google Scholar 

  211. Kempen K, Thijs L, Van Humbeek J, Kruth J-P (2012) Mechanical properties of AlSi10Mg produced by selective laser melting. Phys Procedia 39:439–446

    Article  CAS  Google Scholar 

  212. Hitzler L, Janousch C, Schanz J, Merkel M, Heine B, Mack F et al (2017) Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol 243:48–61

    Article  CAS  Google Scholar 

  213. Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cycle fatigue, and fracture behaviour. Mater Des 34:159–169

    Article  CAS  Google Scholar 

  214. Maskery I, Aboulkhair NT, Tuck C, Wildman RD, Ashcroft IA, Everitt NM, et al. .(2015) Fatigue performance enhancement of selectively laser melted aluminium alloy byheat treatment. In: Twenty-sixth annual international solid freeform fabrication (SFF) symposium – an additive manufacturing conference, Texas, U.S.A. 1017-1026

  215. Tang M, Chris PP (2017) Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int J Fatigue 94:194–201

    Article  CAS  Google Scholar 

  216. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) Improving the fatigue behaviour of a selectively laser melted aluminium alloy: influence of heat treatment and surface quality. Mater Des 104:174–182

    Article  CAS  Google Scholar 

  217. Mower TM, Long MJ (2016) Mechanical behavior of additive manufactured, powder-bed laser-fused materials. Mater Sci Eng A 651:198–213

    Article  CAS  Google Scholar 

  218. Olakanmi EO, Cochrane RF, Dalgarno KW (2015) A review on selective laser sintering/ melting (SLS/SLM) of aluminium alloy powders: processing, microstructure, and properties. Prog Mater Sci 74:401–477

    Article  CAS  Google Scholar 

  219. Gu DD, Meiners W, Wissenbach K, Poprawe R (2012) Laser additive manufacturing of metallic components: materials, processes and mechanisms. Int Mater Rev 57:133–164

    Article  CAS  Google Scholar 

  220. Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C, Shi Y (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: microstructure evolution, mechanical properties and fracture mechanism. Mater Sci Eng A 663:116–125

    Article  CAS  Google Scholar 

  221. Rosenthal I, Stern A, Frage N (2017) Strain rate sensitivity and fracture mechanismof AlSi10Mg parts produced by selective laser melting. Mater Sci Eng A 682:509–517

    Article  CAS  Google Scholar 

  222. Asgari H, Odeshi A, Hosseinkhani K, Mohammadi M (2018) On dynamicmechanical behavior of additively manufactured AlSi10Mg 200C. Mater Lett 211:187–190

    Article  CAS  Google Scholar 

  223. Zhang P, Li Z, Liu B, Ding W, Peng L (2016) Improved tensile properties of a newaluminum alloy for high pressure die casting. Mater Sci Eng A 651:376–390

    Article  CAS  Google Scholar 

  224. Read N, Wang W, Essa K, Attallah M (2015) Selective laser melting of AlSi10Mg alloy: process optimisation and mechanical properties development. Mater Des 65:417–424

    Article  CAS  Google Scholar 

  225. Krishnan M, Atzeni E, Canali R, Calignano F, Manfredi D, Ambrosio E, Iuliano L (2014) On the effect of process parameters on properties of AlSi10Mg partsproduced by DMLS. Rapid Prototyp J 20(6):449–458

    Article  Google Scholar 

  226. Kempen K, Thijs L, Humbeeck J, Kruth J-P (2015) Processing AlSi10Mg by selective laser melting: parameter optimisation and material characterisation. Mater SciTechnol 31(8):917–923

    CAS  Google Scholar 

  227. Rosenthal I, Stern A, Frage N (2017) Strain rate sensitivity and fracture mechanism of AlSi10Mg parts produced by Selective Laser Melting. Mater Sci Eng A 682:509–517

    Article  CAS  Google Scholar 

  228. Carter LN, Martin C, Withers PJ et al (2014) The influence of the laser scan strategy on grain structure and cracking behaviour in SLM powder-bed fabricated nickel superalloy. J Alloys Compd 615(2):338–347

    Article  CAS  Google Scholar 

  229. Salmi A, Atzeni E (2017) History of residual stresses during the production phases of AlSi10Mg parts processed by powder bed additive manufacturing technology. Virtual Phys Prototyping 12(2):153–160

    Article  Google Scholar 

  230. Zhu Y, Ding Z, Wang L et al (2018) Investigation of performance and residual stress generation of AlSi10Mg processed by selective laser melting. Adv Mater Sci Eng:7814039

  231. Thijs L, Kempen K, Kruth J-P, Humbeeck JV (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mgpowder. Acta Mater 61:1809–1819

    Article  CAS  Google Scholar 

  232. Lu L, Nogita K, Dahle AK (2005) Combining Sr and Na additions in hypoeutectic Al-Si foundry alloys. Mater Sci Eng A 399:244–253

    Article  CAS  Google Scholar 

  233. Karakösea E, Keskin M (2009) Effect of solidification rate on the microstructure and microhardness of a melt-spun Al-8Si-1Sb alloy. J Alloys Compd 479:230–236

    Article  CAS  Google Scholar 

  234. Sames W, List F, Pannala S, Dehoff R (2016) Metallurgy and processing science of metaladditive manufacturing. Int Mater Rev 61(5):315–360

    Article  CAS  Google Scholar 

  235. Weingarten C, Buchbinder D, Pirch N, Meiners W, Wissenbach K, Poprawe R (2015) Formation and reduction of hydrogen porosity during selective laser melting ofAlSi10Mg. J Mater Process Technol 221:112–120

    Article  CAS  Google Scholar 

  236. Aboulkhair NT, Everitt NM, Ashcroft I, Tuck C (2014) Reducing porosity inAlSi10Mg parts processed by selective laser melting. Addit Manuf 4:77–86

    Google Scholar 

  237. Weingarten C et al (2015) Formation and reduction of hydrogen porosity duringselective laser melting of AlSi10Mg. J Mater Process Technol 221:112–120

    Article  CAS  Google Scholar 

  238. Aboulkhair NT, Everitt NM, Ashcroft I et al (2014) Reducing porosity in AlSi10Mg parts processed by selective laser melting. AdditManuf 1–4:77–86

    Google Scholar 

  239. Plessis AD, Yadroitsev I, Yadroitsava I et al (2018) X-ray microcomputed tomography in additive manufacturing: a review of the current technology and applications. 3D Print AdditManuf 5(3):227–247

    Article  Google Scholar 

  240. Xu Z, Liu A, Wang X (2021) Fatigue performance and crack propagation behavior of selective laser melted AlSi10Mg in 0°, 15°, 45° and 90° building directions. Mater Sci Eng A 812:141141

    Article  CAS  Google Scholar 

  241. Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additivemanufactured AlSi10Mg samples using selective laser melting (SLM):microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–169

    Article  CAS  Google Scholar 

  242. Tang M, Pistorius PC (2017) Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int J Fatigue 94:192–201

    Article  CAS  Google Scholar 

  243. Aboulkhair NT, Everitt NM, Ashcroft I, et al., Reducing porosity in AlSi10Mg parts processed by selective laser melting. AdditManuf .1–4 (2014) 77–86.

  244. Brandl E, Heckenberger U, Holzinger V, Buchbinder D. Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): microstructure, high cyclefatigue, and fracture behaviour. Mater Des .34 (2012) 159–69.\

  245. Tang M, Pistorius P Chris. Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting. Int J Fatigue 94 (2017) 192–201

  246. A. Barari, H.A. Kishawy, F. Kaji, M.A. Elbestawi, On the surface quality of additive manufactured parts, Int. J. Adv. Manuf. Technol. 89 (2017)1969-1974.

  247. Mohammadi M, Asgari H (2018) Achieving low surface roughness AlSi10Mg_200C parts using direct metal laser sintering. Addit Manuf 20:23–32

    CAS  Google Scholar 

  248. Leon A, Aghion E (2017) Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM). Mater Charact 131:229–237

    Article  CAS  Google Scholar 

  249. Uzan NE, Shneck R, Yeheskel O (2017) Frage N, Fatigue of AlSi10Mg specimens fabricated byadditive manufacturing selective laser melting (AM-SLM). Mater Sci Eng A 704:229–237

    Article  CAS  Google Scholar 

  250. Günther, J., Leuders, S., Koppa, P., Tröster, T., Henkel, S., Biermann, H., Niendorf, T.,2018. On the effect of internal channels and surface roughness on the high-cycle fatigue performance of Ti-6Al-4V processed by SLM. Mater. Des. 143 (2018) 1-11

  251. M. Jamshidinia, F. Kong, R. Kovacevic, The numerical modeling of fatigueproperties of a bio-compatible dental implant produced by electron beammelting (EBM), in: In Proceeding of the Twenty Forth Annual InternationalSolid Freeform Fabrication Symposium.(2013) 791-804

  252. Stephens RI, Fatemi A, Stephens RR, Fuchs HO (2000) Metal Fatigue inEngineering. John Wiley & Sons

  253. Zou Y et al (2017) The intergranular corrosion behavior of 6000-series alloys withdifferent Mg/Si and Cu content. Appl Surf Sci 405:489–496

    Article  CAS  Google Scholar 

  254. Li T, Li XG, Dong CF, Cheng YF (2010) Characterization of atmospheric corrosionof 2A12 aluminum alloy in tropical marine environment. J Mater EngPerform 19:591–598

    CAS  Google Scholar 

  255. Molland AF, Turnock SR, Hudson DA (2017) Ship Resistance and Propulsion. Cambridge University Press

  256. Wohlers, Wohlers Report 2014 - 3D Printing and Additive Manufacturing State of theIndustry Annual Worldwide Progress Report (2016).

  257. Strano, G., Hao, L., Everson, R.M., Evans, K.E.., Surface roughness analysis, modellingand prediction in selective laser melting. Journal of Materials Processing Technology,.213(4) (2013) 589-597.

  258. Bañón c., Raspall f. Additive Manufacturing Technologies for Architecture. In: 3D Printing Architecture. SpringerBriefs in Architectural Design and Technology. Springer, Singapore.(2021) 13-20.

  259. Tian Y, Tomus D, Rometsch P, Wu X (2017) Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit Manuf 13:103–112

    CAS  Google Scholar 

  260. Calignano F, Manfredi D, Ambrosio EP, Iuliano L, Fino P (2013) Influence of processparameters on surface roughness of aluminum parts produced by DMLS. InternationalJournal of Advanced Manufacturing Technology 67(9-12):2743–2751

    Article  Google Scholar 

  261. Gebhardt, A., Hötter, J.-S., Ziebura, D.: Impact of SLM build parameters on the surface quality. RTejournal - Forum für Rapid Technologie .11(2014)

  262. Calignano F et al (2013) Influence of process parameters on surface roughness of aluminum parts produced by DMLS. Int J Adv Manuf Technol 67(9–12):2743–2751

    Article  Google Scholar 

  263. Tian Y, Tomus D, Rometsch P, Wu X (2017) Influences of processing parameters on surface roughness of Hastelloy X produced by selective laser melting. Addit.Manuf. 13:103–112

    CAS  Google Scholar 

  264. Nguyen QB, Luu DN, Nai SML, Zhu Z, Chen Z, Wei J (2018) The role of powder layer thickness on the quality of SLM printed parts. Arch Civil Mech Eng 18:948–955

    Article  Google Scholar 

  265. Calignano F (2018) Investigation of the accuracy and roughness in the laser powder bed fusion process. Virtual Phys Prototyp 13:97–104

    Article  Google Scholar 

  266. Atzeni, E., Salmi, A., Incontro, M., Study on unsupported over hangs of AlSi10Mg parts. A DoE approach for evaluating the quality of selfsupporting faces in DMLS, in 4th International Conference on Additive Technologies (iCAT2012), D. International, Editor. 2012: Maribor, Slovenia

  267. P.Ferro, R,meneghello, S.M.J.Razavi,F.Berto, and G.Savio,,Porasity inducing process parameters in selective laser melted AlSi10Mg AlloyPhysical meso mechanics, 23 (2020) 256-262

  268. Ahmed A, Majeed A, Atta Z, Jia G (2019) Dimensional Quality and Distortion Analysis of Thin-Walled Alloy Parts of AlSi10Mg Manufactured by Selective Laser Melting. Journal of Manufacturing and Materials Processing 3(2):5

    Article  CAS  Google Scholar 

  269. Xiaochuan Zhang , Jinwu Kang ,*, Yiming Rong , Pengyue Wu and Tao Feng ,” Effect of Scanning Routes on the Stress and Deformation of Overhang Structures Fabricated by SLM, Materials.12(1) (2019) 47

  270. Ahmed H. Maamoun, Yi F. Xue1, Mohamed A. Elbestawi 1, Stephen C. Veldhuis,”Effect of SLM process parameters on the quality of Al Alloy parts; Part I: powder characterization, density, surface roughness, and dimensional 2 accuracy”Peer-reviewed version available at Materials .11(2018)2343

  271. Tao Yang, Tingting Liu, Wenhe Liao, Eric MacDonald, Huiliang Wei, Xiangyuan Chen, LiyiJiang,”The Influence of Process Parameters on Vertical Surface Roughness of the AlSi10Mg Parts Fabricated by Selective Laser Melting”, J Mater Process Technol266 (2019) 26-36

  272. S.A. Jawade , Rashmi.S. Joshi, S.B. Desai,” Comparative study of mechanical properties of additively manufactured aluminum alloy”, Materials Today: Proceedings ,2020.

  273. NaorEladUzana,, Barak Ratzker, Peri Landau, Sergey Kalabukhov, Nachum Frage,” Compressive creep of AlSi10Mg parts produced by selective laser melting additive manufacturing technology, Additive Manufacturing 29 (2019) 100788

  274. .P. Lam, D.Q. Zhang, Z.H. Liu & C.K. Chua (2015): Phase analysis and microstructure characterisation of AlSi10Mg parts produced by Selective Laser Melting, Virtual and Physical Prototyping, virtual and physical prototyping.10(4) (2015) 207-215

  275. Z. Dong, Y. Liu, Q. Zhang, J. Ge, S. Ji, W. Li, J. Liang, “Microstructural heterogeneity of AlSi10Mg alloy lattice structures fabricated by selective laser melting: Phenomena and mechanism”, Journal of Alloys and Compounds .833(2020) 155071.

  276. Hadadzadeh A, Amirkhiz BS, Shakerin S, Kelly J, Li J, Mohammadi M, Microstructural investigation and mechanical behavior of a two-material component fabricated through selective laser melting of AlSi104Mg on an Al-Cu-Ni-Fe-Mg cast alloy substrate, Additive Manufacturing .31 (2020)100937

  277. K. Kamarudin1,, M.S. Wahab, Z. Shayfull, Aqeel Ahmed , and A.A. Raus,” Dimensional Accuracy and Surface Roughness Analysis for AlSi10Mg Produced by Selective Laser Melting (SLM), MATEC Web of Conferences .7(2016) 01077

  278. Ming Tang, P. Chris Pistorius, “Oxides, porosity and fatigue performance of AlSi10Mg parts produced by selective laser melting”, International Journal of Fatigue xxx (2016) .94(2) (2017) 192-201

  279. Ahmad Bin Anwar, Quang-Cuong Pham, “Selective Laser Melting of AlSi10Mg: Effects of scan direction, part placement and inert gas flowvelocity on tensile strength, Journal of Materials Processing Tech.240 (2017) 388-396

  280. A. A Raus1, , M. S. Wahab , Z. Shayfull2 ,K. Kamarudin1 and M. Ibrahim, The Influence of Selective Laser Melting Parameters on Density and Mechanical Properties of AlSi10Mg, MATEC Web of Conferences .78(2016) 01078

  281. K. Kamarudin, M. S. Wahab, A. A. Raus, Aqeel Ahmed, S. Shamsudin, Benchmarking of dimensional accuracy and surface roughness for AlSi10Mg part by selective laser melting (SLM), AIP Conf. Proc.1831 (2017) 020047

  282. Lianfeng Wang, Xiaohui Jiang, Miaoxian Guo, Xiaogang Zhu & Biao Yan (2017): Characterisation of structural properties for AlSi10Mg alloys fabricated by selective laser melting, Materials Science and Technology, materials science and technology.33(18) (2017) 2274-2282

  283. Aqeel Ahmed, M. S. Wahab, A. A. Raus, K. Kamarudin, Qadir Bakhsh and Danish Ali,Effects of Selective Laser Melting Parameters on Relative Density of AlSi10Mg, International Journal of Engineering and Technology (IJET).8(6) (2016) 2552-2557

  284. J. Zou , Y. Zhua, M. Pan , T. Xie , X. Chen , H. Yang, A study on cavitation erosion behavior of AlSi10Mg fabricated by selective laser melting (SLM), Wear376-377(2017)496–506

  285. Wang L-z, Wang S, Wu J-j (2017) Experimental investigation on densification behavior and surface roughness of AlSi10Mg powders produced by selective laser melting. Opt Laser Technol 96:88–96

    Article  CAS  Google Scholar 

  286. Naoki Takata, Hirohisa Kodaira1, Asuka Suzuki, Makoto Kobashi, Size dependence of microstructure of AlSi10Mg alloy fabricated by selective laser melting, Materials Characterization.143 (2018) 18-26

  287. Awd M, Stern F, Kampmann A, Kotzem D, Tenkamp J, Walther F (2018) Microstructural Characterization of the Anisotropy and Cyclic Deformation Behavior of Selective Laser Melted AlSi10Mg Structures. Metals. 8(10):825

    Article  CAS  Google Scholar 

  288. Biffi CA, Fiocchi J, Bassani P, Tuissi A (2018) Continuous wave vs pulsed wave laser emission in selective laser melting of AlSi10Mg parts with industrial optimized process parameters: microstructure and mechanical behaviour. Additive Manufacturing 24:639–646

    Article  CAS  Google Scholar 

  289. Zhichao Dong , Xiaoyu Zhang , Wenhua Shi , Hao Zhou , HongshuaiLei,and Jun Liang, Study of Size Effect on Microstructure and Mechanical Properties of AlSi10Mg Samples Made by Selective Laser Melting, Materials .11(12) (2018) 2463

  290. Mfusi BJ, Tshabalala LC, Popoola API, Mathe NR (2018) The effect of selective laser melting build orientation on the mechanical properties of AlSi10Mg parts. IOP Conf Series: Materials Science and Engineering 430:012028

    Article  Google Scholar 

  291. Song B, Yan Q, Shi Y (2020) Comparative study of performance comparison of AlSi10Mg alloy prepared by selective laser melting and casting. J Mater Sci Technol 41:199208

    Article  Google Scholar 

  292. Tianyu Yu , Holden Hyer, Yongho Sohn , Yuanli Bai , DazhongWu,” Structure-property relationship in high strength and lightweight AlSi10Mg microlattices fabricated by selective laser melting Materials and Design 182 (2019) 108062

  293. Zhong-hua Li, Yun-feiNie, Bin Liu, Ze-zhou Kuai, Miao Zhao,Fei Liu, Mechanical properties of AlSi10Mg lattice structures fabricated by selective laser melting, Materials & Design.192(2020) 108709

  294. Dong Z, Liu Y, Li W, Liang J (2019) Orientation dependency for microstructure, geometric accuracy and mechanical properties of selective laser melting AlSi10Mg lattices. J Alloys Compd 791:490–500

    Article  CAS  Google Scholar 

  295. Chen B, Yao Y, Song X, Tan C, Liang C, Feng J (2018) Microstructure and mechanical properties of additive manufacturing AlSi10Mg alloy using direct metal deposition. Ferroelectrics 523:153–166

    Article  CAS  Google Scholar 

  296. G. Struzikiewicz , W. Ze˛bala, B. Słodki, “Cutting parameters selection for sintered alloy AlSi10Mg longitudinal turning”Measurement 138 (2019) 39–53

  297. Palumbo B, Del Re F, Martorelli M, Lanzotti A, Corrado P (2017) Tensile properties characterization of AlSi10Mg parts produced by direct metal laser sintering via nested effects modeling. Materials 10(2):144

    Article  PubMed Central  CAS  Google Scholar 

  298. Ghasri-Khouzania M, Peng H, Attardo R, Ostiguy P, Neidig J, Billo R, Hoelzle D, Shankar MR (2019) Comparing microstructure and hardness of direct metal laser sintered AlSi10Mg alloy between different planes. J Manuf Process 37:274–280

    Article  Google Scholar 

  299. Calignano F, Manfredi D, Ambrosio EP, Iuliano L, Fino P (2013) Influence of process parameters on surface roughness of aluminum parts produced byDMLS. Int J Adv Manuf Technol 67:2743–2751

    Article  Google Scholar 

  300. BehroozJalalahmadi, Jingfu Liu, Jason Rios, John Slotwinski,ChristopherPeitsch, Arnold Goldberg, Timothy Montalbano,In-process defect monitoring and correction in additive manufacturing of aluminum alloys, Presented at the Vertical Flight Society’s 75th Annual Forum & Technology Display, Philadelphia, PA, USA, May 13-16, 2019

  301. F. Calignanoa,, G. Cattanob,, D. Manfredi,”Manufacturing of thin wall structures in AlSi10Mg alloy by laser powder bed fusion through process parameters”,Journal of Materials Processing Tech. 255 (2018) 773–783

  302. HitzlerE,Sert· E., Schuch A, Öchsner · M, Merkel3, B. Heine4 · E. Werner, Fracture toughness of L-PBF fabricated aluminium–silicon: a quantitative study on the role of crack growth direction with respect to layering, Progress in Additive Manufacturing . 5 (2020)259–266

  303. Alexandra Inberg , Dana Ashkenazi ,Giora Kimmel · YosiShacham , Diamand, Adin Stern, Gold plating of AlSi10Mg parts produced by a laser powder-bed fusion additive manufacturing technique, Progress in Additive Manufacturing. . 5(2020) 395-404

  304. N. Dresler, A. Inberg,D. Ashkenazi ,Y. Shacham-Diamand, · A. Stern, Silver Electro less Finishing of Selective Laser Melting 3D-Printed AlSi10Mg Artifacts, Metallography, Microstructure, and Analysis. 8(2019) 678-692

  305. Scherillo F (2019) Chemical surface finishing of AlSi10Mg components made by additive Manufacturing. Manufacturing Letters 19:5–9

    Article  Google Scholar 

  306. Xiaodong Xing , Xiaoming Duan , Tingting Jiang , Jiandong Wang and Fengchun Jiang, Ultrasonic Peening Treatment Used to Improve Stress Corrosion Resistance of AlSi10Mg Components Fabricated Using Selective Laser Melting, Metals .9(1) (2019) 103.

  307. Maamoun AH, Elbestawi MA, Veldhuis SC (2018) Influence of Shot Peening on AlSi10Mg Parts Fabricated by Additive Manufacturing. J Manuf Mater Process 2(3):40

    CAS  Google Scholar 

  308. James Damon, Stefan Dietrich, Florian Vollert,JensGibmeier, Volker Schulze, Process dependent porosity and the influence of shot peening on porosity morphology regarding selective laser melted AlSi10Mg parts, Additive Manufacturing. 20 (2018) 458-464.

  309. NE, Ramati S, Shneck R, Frage N, Yeheskel O, On the effect of shot-peening on fatigue resistance of AlSi10Mg specimens fabricated by additive manufacturing using selective laser melting (AM-SLM), Additive Manufacturing . 21 (2018) 458-464.

  310. Author: E. Atzeni M. Barletta F. Calignano L. IulianoG. Rubino V. Tagliaferri, Abrasive Fluidized Bed (AFB) finishing of AlSi10Mg substrates manufactured by Direct Metal Laser Sintering (DMLS),Additive Manufacturing. 10 (2016) 15-23

  311. Andrea El Hassanin, Maurizio Troiano, Alessia Teresa Silvestri,VincenzoContaldi, Fabio Scherillo, Roberto Solimene,Fabrizio Scala , Antonino Squillace and Piero Salatino, Influence of Abrasive Materials in Fluidised Bed Machining of AlSi10Mg Parts Made through Selective Laser Melting Technology,Key Engineering Materials. 183 (2019) 129-134.

  312. Xiao Teng, Guixiang Zhang,Yugang Zhao & Yuntao Cui, Linguang Li & Linzhi Jiang, Study on magnetic abrasive finishing of AlSi10Mg alloy prepared by selective laser melting, The International Journal of Advanced Manufacturing Technology, 105 (2019) 2513-2521

  313. U. Tradowsky, J. White, R.M. Ward, N. Read, W. Reimers, M.M. Attallah, Selective Laser Melting of AlSi10Mg: Influence of Post-Processing on the Microstructural and Tensile Properties Development.105 (2016) 212-222

  314. Rosenthal RS, Stern A (2018) Heat treatment effect on the mechanical properties and fracture mechanism in AlSi10Mg fabricated by Additive Manufacturing Selective Laser Melting process. Materials Science & Engineering A 729:310–322

    Article  CAS  Google Scholar 

  315. Hirata T, Kimura T, Nakamoto T (2020) Effects of hot isostatic pressing and internal porosity on the performance of selective laser melted AlSi10Mg alloys. Materials Science & Engineering A 772:138713

    Article  CAS  Google Scholar 

  316. Hastie JC, Kartal ME, Carter LN, Attallah MM, Mulvihill DM (2020) Classifying shape of internal pores within AlSi10Mg alloy manufactured by laser powder bed fusion using 3D X-ray micro computed tomography: Influence of processing parameters and heat treatment. Mater Charact 163:110225

    Article  CAS  Google Scholar 

  317. Girelli L, Giovagnoli M, Tocci M, Pola A, Fortini A, Merlin M, La Vecchia GM (2019) Evaluation of the impact behaviour of AlSi10Mg alloy produced using laser additive manufacturing. Materials Science & Engineering A 748:38–51

    Article  CAS  Google Scholar 

  318. Uzan NE, Shneck R, Yeheskel O, Frage N (2017) Fatigue of AlSi10Mg specimens fabricated by additive manufacturing selective laser melting (AM-SLM). Materials Science & Engineering A 704:229–237

    Article  CAS  Google Scholar 

  319. Liu B, Li B-Q, Li Z (2019) Selective laser remelting of an additive layer manufacturing process on AlSi10Mg. Results in Physics 12:982–988

    Article  Google Scholar 

  320. Yu W, Sing SL, Chua CK, Tian X (2019) Influence of re-melting on surface roughness and porosity of AlSi10Mg parts fabricated by selective laser melting. J Alloys Compd 792:574–581

    Article  CAS  Google Scholar 

  321. Wenhuiyu, Sweeleong sing, Xuelei tian, Chee kai chua, Effects of re-melting strategies on densification behavior and mechanical properties of selective laser melting AlSi10Mg parts, Proc. Of the 3rd Intl. Conf. on Progress in Additive Manufacturing,2010,pp.476-481.

  322. Schanz J, Hofele M, Hitzler L, Merkel M, Riegel H (2016) Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam, machining, joining and modifications of advanced materials. Advanced Structured Materials 61:159–169

    Article  Google Scholar 

  323. du Plessis A, Glaser D, Moller H, Mathe N, Tshabalala L, Mfusi B, Mostert R (2019) Pore closure effect of laser shock peening of additively manufactured AlSi10Mg. 3d Printing and Additive Manufacturing 6:245–252

    Article  Google Scholar 

  324. Takata N, Liu M, Kodaira H, Suzuki A, Kobashi M (2020) Anomalous strengthening by supersaturated solid solutions of selectively laser melted Al–Si-based alloys. Additive Manufacturing 33:101152

    Article  CAS  Google Scholar 

  325. Busisiwe J. Mfusi , Ntombizodwa R. Mathe , Lerato C. Tshabalala and Patricia AI. Popoola , The Effect of Stress Relief on the Mechanical and Fatigue Properties of Additively Manufactured AlSi10Mg Parts, Metals 9(11) (2016) 1216

  326. Suzuki A, Sekizawa K, Liu M, Takata N, Kobashi M (2019) Effects of heat treatments on compressive deformation behaviors of lattice-structured alsi10mg alloy fabricated by selective laser melting. Adv Eng Mater:1900571

  327. Hrbáčková T, Simson T, Koch J, Wolf G (2019) The effect of heat treatment on mechanical properties and microstructure of additively manufactured components. IOP Conf Series: Materials Science and Engineering 461:012026

    Article  Google Scholar 

  328. Xiaohui Jiang , Wenjing Xiong, Lianfeng Wang, Miaoxian Guo and Zishan Ding, Heat treatment effects on microstructure-residual stress for selective laser melting AlSi10Mg,Materials science and Technology, 2019

  329. Zakay A, Aghion E (2019) Effect of post-heat treatment on the corrosion behavior of alsi10mg alloy produced by additive manufacturing. The Minerals, Metals & Materials Society 71:1150–1157

    Article  CAS  Google Scholar 

  330. Tridello A, Fiocchi J, Biffi CA, Chiandussi G, Rossetto M, Tuissi A, Paolino DS (2019) VHCF response of Gaussian SLM AlSi10Mg specimens: Effect of a stress relief heat treatment. Int J Fatigue 124:435–443

    Article  CAS  Google Scholar 

  331. EladUzan N, Shneck R, Yeheskel O, Frage N (2018) High- temperature mechanical properties of alsi10mg specimens fabricated by additive manufacturing using selective laser melting technologies (AM-SLM). Additive Manufacturing 24:257–263

    Article  CAS  Google Scholar 

  332. Rubben T, Revilla RI, De Graeve I (2019) Influence of heat treatments on the corrosion mechanism of additive manufactured AlSi10Mg. Corros Sci 147:406–415

    Article  CAS  Google Scholar 

  333. Zhuo L, Wang Z, Zhang H, Yin E, Wang Y, Xu T, Li C (2019) Effect of post-process heat treatment on microstructure and properties of selective laser melted AlSi10Mg alloy. Mater Lett 234:196–200

    Article  CAS  Google Scholar 

  334. Maamoun AH, Elbestawi M, Dosbaeva GK, Veldhuis SC (2018) Thermal post-processing of AlSi10Mg parts produced by Selective Laser Melting using recycled powder. Additive Manufacturing 21:234–247

    Article  CAS  Google Scholar 

  335. Tang M, Pistorius PC (2017) Anisotropic mechanical behavior of AlSi10Mg parts produced by selective laser melting. The Minerals, Metals & Materials Society 69:516–522

    Article  CAS  Google Scholar 

  336. Gong W, Qi J, Wang Z, Chen Y, Jiang J, Wang Z, Qi Y (2019) Microstructure and Mechanical Properties of Selective Laser Melting AlSi10Mg, 3rd International Symposium of Space Optical Instruments and Applications. Springer Proceedings in Physics 192:113–120

    Article  Google Scholar 

  337. Li W, Li S, Liu J, Zhang A, Zhou Y, Wei Q, Yan C, Shi Y (2016) Effect of heat treatment on AlSi10Mg alloy fabricated by selective laser melting: Microstructure evolution, mechanical properties and fracture mechanism. Materials Science & Engineering A 663:116–125

    Article  CAS  Google Scholar 

  338. Fite J, Prameela SE, Slotwinski J, Weihs T (2020) Evolution of the microstructure and mechanical properties of additively manufactured AlSi10Mg during room temperature holds and low temperature aging. Additive Manufacturing 36:101429

    Article  CAS  Google Scholar 

  339. Majeed A, Ahmed A, Salam A, Sheikh MZ (2019) Surface quality improvement by parameters analysis, optimization and heat treatment of AlSi10Mg parts manufactured by SLM additive manufacturing. International Journal of Lightweight Materials and Manufacture 2(4):288–295

    Article  Google Scholar 

  340. Majeed A, Muzamil M, Lv J, Liu B, Ahmad F (2019) Heat treatment influences densification and porosity of AlSi10Mg alloy thin-walled parts manufactured by selective laser melting technique. J Braz Soc Mech Sci Eng 41:267

    Article  CAS  Google Scholar 

  341. Lv F, Shen L, Liang H, Xie D, Wang C, Tian Z (2019) Mechanical properties of AlSi10Mg alloy fabricated by laser melting deposition and improvements via heat treatment. Optik 179:8–18

    Article  CAS  Google Scholar 

  342. Zhang, C., Zhu, H., Liao, H., Cheng, Y., Hu, Z., Zeng, X., Effect of heat treatments on fatigue property of selective laser melting AlSi10Mg, International Journal of Fatigue .116 (2018) 513-522.

  343. Majeed A, Zhang YF, Lv JX, Peng T, Waqar S, Atta Z (2018) Study the effect of heat treatment on the relative density of slm built parts of alsi10mg alloy, CIE48 Proceedings. The University of Auckland, December 2-5

  344. J. Fiocchi, .C.A. Biffi, C. Colombo, L.M. Vergani, and A. Tuissi, Ad Hoc heat treatments for selective laser melted Alsi10mg alloy aimed at stress-relieving and enhancing mechanical performances, Additive Manufacturing Validation and Control.72 (2020) 1118-1127

    CAS  Google Scholar 

  345. Di Giovanni MT, de Menezes JTO, Bolelli G, Cerri E, Castrodez EM (2019) Fatigue crack growth behavior of a selective laser melted AlSi10Mg. Eng Fract Mech 217:106564

    Article  Google Scholar 

  346. Qiu L, Wang F, Yang Y, Guo L (2019) A new modification effect of eutectic Si in selective laser melted AlSi10Mg. Mater Sci Technol 35(6):709–715

    Article  CAS  Google Scholar 

  347. DomfangNgnekou JN, Nadot Y, Henaff G, Nicolai J, Kan WH, Cairney JM, Ridosz L (2019) Fatigue properties of AlSi10Mg manufactured by Additive Layer Manufacturing. Int J Fatigue 119:160–172

    Article  CAS  Google Scholar 

  348. Brandl E, Heckenberger U, Holzinger V, Buchbinder D (2012) Additive manufactured AlSi10Mg samples using Selective Laser Melting (SLM): Microstructure, high cycle fatigue, and fracture behavior. Mater Des 34:159–165

    Article  CAS  Google Scholar 

  349. Iturrioz A, Gil E, Petite MM, Garciandia F, Mancisidor AM, Sebastian MS (2018) Selective laser melting of AlSi10Mg alloy: influence of heat treatment condition on mechanical properties and microstructure. International Institute of Welding 62:885–892

    CAS  Google Scholar 

  350. Zyguła K, Nosek B, Pasiowiec H, Szysiak N (2018) Mechanical properties and microstructure of AlSi10Mg alloy obtained by casting and SLM technique. WSN 104:462–472

    Google Scholar 

  351. Casati R, Nasab MH, Coduri M, Tirelli V, Vedani M (2018) Effects of platform pre-heating and thermal-treatment strategies on properties of AlSi10Mg alloy processed by selective laser melting. Metals 8(11):954

    Article  CAS  Google Scholar 

  352. Fousová M, Dvorský D, Michalcová A, Vojtěch D (2018) Changes in the microstructure and mechanical properties of additively manufactured AlSi10Mg alloy after exposure to elevated temperatures. Mater Charact 137:119–126

    Article  CAS  Google Scholar 

  353. Aboulkhair NT, Maskery I, Tuck C, Ashcroft I, Everitt NM (2016) The microstructure and mechanical properties of selectively laser melted AlSi10Mg: The effect of a conventional T6-like heat treatment. Materials Science & Engineering A 667:139–146

    Article  CAS  Google Scholar 

  354. Seabra M et al (2016) Selective laser melting (SLM) and topology optimization for lighter aerospace components. Procedia Struct Integr 1:289–296

    Article  Google Scholar 

  355. Anil S, Anand PS, Alghamdi H, Jansen JA (2011) Dental implant surface enhancement and Osseo integration. In Tech Open Access Publ 1:83–108

    Google Scholar 

  356. Asgari H, Baxter C, Hosseinkhani K, Mohammadi M (2017) On microstructure and mechanical properties of additively manufactured AlSi10Mg_200C using recycled powder. Materials Science & Engineering A 707:148–158

    Article  CAS  Google Scholar 

  357. Fathi P, Mohammadi M, Duan X, Nasiri AM (2018) A comparative study on corrosion and microstructure of direct metal laser sintered AlSi10Mg_200C and die cast A360.1 aluminum. Journal of Materials Processing Tech 259:1–14

    Article  CAS  Google Scholar 

  358. Mohammadi M, HamedAsgari (2018) Achieving low surface roughness AlSi10Mg 200C parts using direct metal laser sintering. Additive Manufacturing 20:23–32

    Article  CAS  Google Scholar 

  359. Fatemi A, Molaei R, Sharifimehr S, Phan N, Shamsaei N (2017) Multi axial fatigue behavior of wrought and additive manufactured Ti-6Al-4 V including surface finish effect. Int J Fatigue 100:347–366

    Article  CAS  Google Scholar 

  360. Leon A, Aghion E (2017) Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by selective laser melting (SLM). Mater Charact 131:188–194

    Article  CAS  Google Scholar 

  361. Alrbaey K, Wimpenny D, Tosi R, Manning W, Moroz A (2014) On optimization of surface roughness of selective laser melted stainless steel parts: a statistical study. J Mater Eng Perform 23:2139–2148

    Article  CAS  Google Scholar 

  362. Read N, Wang W, Essa K, Attallah MM (2015) Selective laser melting of AlSi10Mgalloy: process optimization and mechanical properties development. Mater.Des. 65:417–424

    Article  CAS  Google Scholar 

  363. Bacchewar PB, Singhal SK, Pandey PM (2007) Statistical modelling and optimization of surface roughness in the selective laser sintering process. Proc Inst Mech Eng Part B: J Eng Manuf 221:35–52

    Article  CAS  Google Scholar 

  364. Polmear IJ (2006) Light alloys: from traditional alloys to nan crystals. Elsevier, Oxford, UK

  365. Kimura T, Nakamoto T (2016) Microstructures and mechanical properties of A356 (AlSi7Mg0.3) aluminum alloy fabricated by selective laser melting. Materials Design 89:1294–1301

    Article  CAS  Google Scholar 

  366. Heng Rao, Stephanie Giet , Kun Yang , Xinhua Wu, Chris H.J. Davies,” The influence of processing parameters on aluminium alloy A357 manufactured by Selective Laser Melting, Materials and Design 109 (2016) 334–346

  367. Aversa A, Lorusso M, Trevisan F, Ambrosio EP, Calignano F, Manfredi D, Biamino S, Fino P, Lombardi M, Pavese M (2017) Effect of process and post-process conditions on the mechanical properties of an A357 alloy produced via laser powder bed fusion. Metals 7(2):68

    Article  CAS  Google Scholar 

  368. Yang KV, Rometsch P, Jarvis T, Rao J, Cao S, Davies C, Wu X (2018) Porosity formation mechanisms and fatigueresponse in Al-Si-Mg alloys made by selective laser melting. Materials Science & Engineering A 712:166174

    Article  CAS  Google Scholar 

  369. Yang KV, Rometsch P, Davies CHJ, Huang A, Wu X (2018) Effect of heat treatment on the microstructure and anisotropy in mechanical properties of A357 alloy produced by selective laser melting. Mater Des 154:275–290

    Article  CAS  Google Scholar 

  370. Bassoli E, Denti L, Comin A, Sol A, Togno E (2018) Fatigue behavior of as-built L-PBF A357.0 parts. Metals 8(8):634

    Article  CAS  Google Scholar 

  371. Tonelli L, Liverani E, Valli G, Fortunato A, Ceschini L (2020) Effects of powders and process parameters on density and hardness of A357 aluminum alloy fabricated by selective laser melting. Int J Adv Manuf Technol 10(6):371–383

    Article  Google Scholar 

  372. Rao JH, Zhang Y, Zhang K, Wu X, Huang A (2019) Selective laser melted Al-7Si-0.6Mg alloy with in-situ precipitation via platform heating for residual strain removal. Mater Des 182:108005

    Article  CAS  Google Scholar 

  373. Lorusso M, Trevisan F, Calignano F, Lombardi M, Manfredi D (2020) A357 Alloy by LPBF for industry applications. Materials 13:1488

    Article  CAS  PubMed Central  Google Scholar 

  374. Li YX, Zhang PF, Bai PK, Wu LY, Liu B, Zhao ZY (2018) Microstructure and properties of Ti/TiBCN coating on 7075 aluminum alloy by laser cladding. Surf Coat Technol 334:142–149

    Article  CAS  Google Scholar 

  375. Zhao X, Song B, Fan WR, Zhang YJ, Shi YS (2016) Selective laser melting of carbon/ AlSi10Mg composites: microstructure, mechanical and electronical properties. J Alloys Compd 665:271–281

    Article  CAS  Google Scholar 

  376. Laorden LM, Rodrigo P, Torres B, Rams J (2017) Modification of microstructure and superficial properties of A356 and A356/10%SiCp by selective laser surface melting (SLSM). Surf Coat Technol 309:1001–1009

    Article  CAS  Google Scholar 

  377. Bao S, Tang K, Kvithyld A, Tangstad M, Engh TA (2011) Wettability of Aluminum on Alumina. Metall Mater Trans B Process Metall Mater Process Sci 42(6):1358–1366

    Article  CAS  Google Scholar 

  378. Shen P, Fujii H, Matsumoto T, Nogi K (2004) Critical Factors Affecting the Wettability of a-Alumina by Molten Aluminum. J Am Ceram Soc 87(7):1265–1273

    Article  CAS  Google Scholar 

  379. Sercombe TB, Schaffer GB Rapid manufacturing of aluminum components. Science 301(5637):1225–1227

  380. Gu DD (2015) Laser additive manufacturing of high-performance materials, Springer-Verlag. Berlin 2015

  381. Gu DD, Chang F, Dai DH (2015) Selective laser melting additive manufacturing of novel aluminum based composites with multiple reinforcing phases. ASME J Manuf Sci Eng 137(2):021010

    Article  Google Scholar 

  382. Fu CH, Guo YB (2014) Three-Dimensional Temperature Gradient Mechanism in selective laser melting of Ti-6Al-4V. ASME J Manuf SciEng 136(6):061004

    Article  Google Scholar 

  383. Yadroitsev I, Bertrand P, Smurov I (2007) Parametric analysis of the selective laser melting process. Appl Surf Sci 253:8064–8069

    Article  CAS  Google Scholar 

  384. Jue JB, Gu DD, Chang K, Dai DH (2016) Microstructure evolution and mechanical properties of Al-Al2O3 composites fabricated by selective laser melting. Powder Technol 310:80–91

    Article  CAS  Google Scholar 

  385. Olakanmi EO (2013) Selective laser sintering/melting (SLS/SLM) of pure Al, Al-Mg, and Al-Si powders: Effect of processing conditions and powder properties. J Mater Process Technol 213(8):1387–1405

    Article  CAS  Google Scholar 

  386. Gu DD, Ma CL, Xia MJ, Dai DH, Shi QM (2017) A multiscale understanding of the thermodynamic and kinetic mechanisms of laser additive manufacturing. Engineering 3:675–684

    Article  CAS  Google Scholar 

  387. Dai DH, Gu DD (2016) Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/ AlSi10Mg composites. Int J Mach Tools Manuf 100:14–24

    Article  Google Scholar 

  388. Song B, Wang ZW, Yan Q, Zhang YJ, Zhang JL, Cai C, Wei QS, Shi YS (2017) Integral method of preparation and fabrication of metal matrix composite: selective laser melting of in-situ nano/submicro-sized carbides reinforced iron matrix composites. Mater Sci Eng A 707:478–487

    Article  CAS  Google Scholar 

  389. Almangour B, Grzesiak D, Yang JM (2017) Scanning strategies for texture and anisotropy tailoring during selective laser melting of TiC/316L stainless steel nanocomposites. J Alloys Compd 728:424–435

    Article  CAS  Google Scholar 

  390. Gu DD, Meng GB, Li C, Meiners W, Poprawe R (2012) Selective laser melting of TiC/Ti bulk nanocomposites: influence of nanoscale reinforcement. Scr Mater 67:185–188

    Article  CAS  Google Scholar 

  391. Han QQ, Geng YQ, Setchi R, Lacan F, Gu DD, Evans SL (2017) Macro and nanoscale wear behaviour of Al-Al2O3 nanocomposites fabricated by selective laser melting. Compos Part B Eng 127:26–35

    Article  CAS  Google Scholar 

  392. Thijs L, Kempen K, Kruth J-P, Van Humbeeck J (2013) Fine-structured aluminium products with controllable texture by selective laser melting of pre-alloyed AlSi10Mg powder. Acta Mater 61:1809–1819

    Article  CAS  Google Scholar 

  393. Aboulkhair NT, Tuck C, Ashcroft I, Maskery I, Everitt NM (2015) On the precipitation hardening of selective laser melted AlSi10Mg. Metall Mater Trans A 46:3337–3341

    Article  CAS  Google Scholar 

  394. Leon A, Aghion E (2017) Effect of surface roughness on corrosion fatigue performance of AlSi10Mg alloy produced by Selective Laser Melting (SLM). Mater Charact 131:188–194

    Article  CAS  Google Scholar 

  395. Dai D, Dongdong G (2016) Influence of thermodynamics within molten pool on migration and distribution state of reinforcement during selective laser melting of AlN/AlSi10Mg composites. Int J Mach Tool Manu 100:14–24

    Article  Google Scholar 

  396. Daia D, Gua D, Xiaa M, Maa C, Chena H, Zhao T, Hong C, Gasser A, Poprawe R (2018) Melt spreading behavior, microstructure evolution and wear resistance of selective laser melting additive manufactured AlN/AlSi10Mg nanocomposite. Surf Coat Technol 349:279–288

    Article  CAS  Google Scholar 

  397. Dai D, Gu D, Poprawe R, Xia M (2017) Influence of additive multilayer feature on thermodynamics, stress and microstructure development during laser 3D printing of aluminum-based material. Sci Bull 62:779–787

    Article  CAS  Google Scholar 

  398. Dongdong G, Jue J, Dai D, Lin K, Chen W (2018) Effects of dry sliding conditions on wear properties of al-matrix composites produced by selective laser melting additive manufacturing. J Tribol 740:021605

    Google Scholar 

  399. Liao H, Zhu H, Xue G, Zeng X (2019) Alumina loss mechanism of Al2O3-AlSi10 Mg composites during selective laser melting. J Alloys Compd 785:286–295

    Article  CAS  Google Scholar 

  400. Dadbakhsh S, Hao L (2012) Effect of Al alloys on selective laser melting behaviour and microstructure of in situ formed particle reinforced composites. J Alloys Compd 541:328–334

    Article  CAS  Google Scholar 

  401. Lorusso M, Aversa A, Manfredi D, Calignano F, Ambrosio EP, Ugues D, Pavese M (2016) Tribological behavior of aluminum alloy AlSi10Mg-TiB2 composites produced by direct metal laser sintering (DMLS). Journal of Materials Engineering and Performance, ASM International 25:3152–3160

    Article  CAS  Google Scholar 

  402. Li Y, Gu D, Zhang H, Xi L (2020) Efect of trace addition of ceramic on microstructure development and mechanical properties of selective laser melted AlSi10Mg alloy. Chin J Mech Eng 33:33

    Article  CAS  Google Scholar 

  403. Li XP, Ji G, Chen Z, Addad A, Wu Y, Wang HW, Vleugels J, Van Humbeeck J, Kruth JP (2017) Selective laser melting of nano-TiB2 decorated AlSi10Mg alloy with high fracture strength and ductility. Acta Mater 129:183–193

    Article  CAS  Google Scholar 

  404. Zhao Z, Bai P, Misra RDK, Li MDRGY, Zhang J, Tan L, Ding JGT, Du W, Guo Z (2019) AlSi10Mg alloy nanocomposites reinforced with aluminum-coated graphene: Selective laser melting, interfacial microstructure and property analysis. J Alloys Compd 792:203–214

    Article  CAS  Google Scholar 

  405. Tiwari JK, Mandal A, Sathish N, Agrawal AK, Srivastava AK (2020) Investigation of porosity, microstructure and mechanical properties of additively manufactured graphene reinforced AlSi10Mg composite. Additive Manufacturing 33:101095

    Article  CAS  Google Scholar 

  406. Wang Y, Shi J (2020) Effect of hot isostatic pressing on nanoparticles reinforced AlSi10Mg produced by selective laser melting. Materials Science & Engineering A 288:139570

    Article  CAS  Google Scholar 

  407. Liu X, Zhao C, Zhou X, Eibl F, Shen Z, Liu W, Meiners W (2019) CNT-reinforced AlSi10Mg composite by selective laser melting: microstructural and mechanical properties. Mater Sci Technol:1038–1045

  408. Zhao X, Song B, Fan W, Zhang Y, Shi Y (2016) Selective laser melting of carbon/ AlSi10Mg composites: microstructure, mechanical and electronical properties. J Alloys Compd 665:271–281

    Article  CAS  Google Scholar 

  409. C. Gaoa, , Z. Wanga , Z. Xiaoa, , D. Youa , K. Wongc , A.H. Akbarzadeh,Selective laser melting of TiN nanoparticle-reinforced AlSi10Mg composite: Microstructural, interfacial, and mechanical properties, Journal of Materials Processing Tech 281 (2020) 116618

    Article  CAS  Google Scholar 

Download references

Funding

This research received no external funding

Author information

Authors and Affiliations

Authors

Contributions

Bheemavarapu Subba Rao: Conceptualization, Methodology, Data collection, Writing-review, and editing.

Thella Babu Rao: Review, Editing, and Supervision.

•All authors have read and agreed to publish a version of the manuscript.

Corresponding author

Correspondence to Bheemavarapu Subba Rao.

Ethics declarations

This article is a review article

Consent to participate

'Not applicable'

Consent for Publication

'Not applicable'

Conflict of Interest

The authors declare that they have no conflict of interest. This review article does not contain any studies with human participants or Animals performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, B.S., Rao, T.B. Mechanical and Tribological Properties of 3D printed Al-Si alloys and composites: a Review. Silicon 14, 5751–5782 (2022). https://doi.org/10.1007/s12633-021-01340-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01340-9

Keywords

Navigation