Skip to main content
Log in

Efficient Sol-gel Nanocomposite TiO2-clay in Photodegradation of Phenol: Comparison to Labe-made and Commercial Photocatalysts

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The degradation and mineralization of phenol have been studied by means of photocatalysis process using UV light (λmax ≈ 365 nm). The investigated nanocompositephotocatalyst TiO2-Py(750) (SBET=16.58 m2.g− 1), with mixed phases of Anatase and Rutile (52.2/10.7), have been sol-gel synthetized and calcined at 750 °C using a decarbonatedpyrophyllite as layered clay and titanium (IV) t-butoxide, Ti(OCH2CH2CH2CH3)4as precursor. Best results were achieved with TiO2-Py(750), which showed great photo-activity than that of labe-made TiO2 ECT1023t and commercial TiO2AEROXIDE®P25. The influences of different operating parameters, like pH, H2O2 concentration, photocatalyst dose, on the photodegradation of phenol by UV/TiO2-Py(750) system were examined. The TiO2-Py(750) showed total degradation, detoxification and good TOC mineralization at optimum conditions (pH = 5, [H2O2] = 10 mmol.L− 1, m = 2 g.L− 1). The toxicity analysis was carriedout based on the inhibition of bioluminescence of the marine bacteria Vibrio fischeri. The title photocatalysts have been investigated by UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier-transformed infrared spectroscopy (FTIR) and BET specific surface area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data Availability

The authors confirm that the data supporting the findings of this study are available within the published article.

References

  1. Sanjini NS, Velmathi S (2015) Photocatalytic degradation of Rhodamine B by mesoporous Ti-KIT-6 under UV light and solar light irradiation. J Porous Mater 22:1549–1558

    CAS  Google Scholar 

  2. Fegousse A, El Gaidoumi A, Miyah Y, El Mountassir R, Lahrichi A (2019) Pineapple bark performance in dyes adsorption: optimization by the central composite design. J Chem :3017163. https://doi.org/10.1155/2019/3017163

  3. Battas A, El Gaidoumi A, Ksakas A, Kherbeche A (2019) Adsorption study for the removal of nitrate from water using local clay. Sci World J :9529618. https://doi.org/10.1155/2019/9529618

  4. Karimi-Maleh H, Ayati A, Ghanbari S, Orooji Y, Tanhaei B, Karimi F, Alizadeh M, Rouhi J, Fu L, Sillanpää M (2021) Recent advances in removal techniques of Cr(VI) toxic ion from aqueous solution: A comprehensive review. J Mol Liq 329:115062

    CAS  Google Scholar 

  5. Karimi-Maleh H, Ayati A, Davoodi R, Karimi F, Tanhaei B, Malekmohammadi S, Orooji Y, Fu L, Sillanpää M (2021) Recent advances in using of chitosan-based adsorbents for removal of pharmaceutical contaminants: A review. J Clean Prod 291:125880

    CAS  Google Scholar 

  6. Karimi-Maleh H, Ranjbari S, Tanhaei B, Ayati A, Orooji Y, Alizadeh M, Karimi F, Salmanpour S, Rouhi J, Sillanpää M, Sen F (2021) Novel 1-butyl-3-methylimidazolium bromide impregnated chitosan hydrogel beads nanostructure as an efficient nanobio-adsorbent for cationic dye removal, 195. Kinetic study, p 110809

  7. Karimi-Maleh H, Kumar BG, Qin S, Rajendran J, Vadivel S, Durgalakshmi D, Gracia F, Soto-Moscoso M, Orooji Y, Karimi F (2020) Tuning of metal oxides photocatalytic performance using Ag nanoparticles integration. J Mol Liq 314:113588

    CAS  Google Scholar 

  8. Karimi-Maleh H, Shafieizadeh M, Opoku F, Taher MA, Muriithi Kiarii E, Govender PP, Ranjbari S, Rezapour M, Orooji Y (2020) The role of magnetite/graphene oxide nano-composite as a high-efficiency adsorbent for removal of phenazopyridine residues from water samples, an experimental/theoretical investigation. J Mol Liq 298:112040

    CAS  Google Scholar 

  9. Sohrabi S, Akhlaghian F (2016) Light expanded clay aggregate (LECA) as a support for TiO2, Fe/TiO2, and Cu/TiO2nanocrystallinephotocatalysts, a comparative study on the structure, morphology, and activity. J Iran Chem Soc 13:1785–1796

    CAS  Google Scholar 

  10. Uddin MT, Islam MS, Abedin MZ (2007) Adsorption of phenol from aqueous solution by water hyacinth ash. J Eng Appl Sci 2:11–17

    Google Scholar 

  11. Ahmaruzzaman M (2008) Adsorption of phenolic compounds on low-cost adsorbents: a review. Adv Colloid Interface Sci 143:48–67

    CAS  PubMed  Google Scholar 

  12. Kale D, Thakur P (2015) Highly efficient photocatalytic degradation and mineralization of 4-nitrophenol by graphene decorated ZnO. J Porous Mater 22:797–806

    CAS  Google Scholar 

  13. Yamasaki H, Makihatal Y, Fukunaga K (2008) Preparation of crosslinkedβ-cyclodextrin polymer beads and their application as a sorbent for removal of phenol from wastewater. J Chem Technol Biotechnol 83:991–997

    CAS  Google Scholar 

  14. Okasha AY, Ibrahim GH (2010) Phenol removal from aqueous systems by sorption of using some local waste materials. EJEAF Che 9:796–807

    CAS  Google Scholar 

  15. Kumar SD, Subbaiah VM, Reddy AS, Krishnaiah A (2009) Biosorption of phenolic compounds from aqueous solutions onto chitosan–abrusprecatorius blended beads. J Chem Technol Biotechnol 84:972–981

    CAS  Google Scholar 

  16. Yan J, Jianping W, Jing B, Daoquan W, Zongding H (2006) Phenol biodegradation by the yeast Candida tropicalis in the presence of m-cresol. Biochem Eng J 29:227–234

    CAS  Google Scholar 

  17. Kumaran P, Paruchuri YL (1996) Kinetics of phenol biotransformation. Water Res 31:11–22

    Google Scholar 

  18. Li Z, Burt T, Bowman RS (2000) Sorption of ionizable organic solutes by surfactant-modified zeolite. Environ Sci Technol 34:3756–3760

    CAS  Google Scholar 

  19. Yapar S, Klahre P, Klumpp E (2004) Hydrotalcite as a Potential Sorbent for the Removal of 2, 4-Dichlorophenol. Turkish J Eng Env Sci 28:41–48

    CAS  Google Scholar 

  20. Akcay M (2004) Characterization and determination of the thermodynamic and kinetic properties of p-CP adsorption onto organophilicbentonite from aqueous solution. J Colloid Interf Sci 280:299–304

    CAS  Google Scholar 

  21. Hao OJ, Kim H, Chiang PC (2000) Decolorization of wastewater. Crit Rev Environ Sci Technol 30:449–505

    CAS  Google Scholar 

  22. Dianat S, Tangestaninejad S, Mirkhani V, Moghadam M, Mohammadpoor-Baltork I (2013) Preparation, characterization and photocatalytic properties of InVO4nanopowder and InVO4-TiO2nanocomposite toward degradation of azo dyes and formaldehyde under visible light and ultrasonic irradiation. J Iran Chem Soc 10:535–544

    CAS  Google Scholar 

  23. Mirkhani V, Tangestaninejad S, Moghadam M, Habibi MH, Rostami Vartooni A (2009) Photodegradation of aromatic amines by Ag-TiO2 photocatalyst. J Iran Chem Soc 6:800–807

    CAS  Google Scholar 

  24. Assi N, Tehrani MS, Azar PA, Husain SW (2017) Microwave–assisted sol-gel synthesis of Fe2.9O4/ZnO core/shell nanoparticles using ethylene glycol and its use in photocatalytic degradation of 2-nitrophenol. J Iran Chem Soc 14:221–232

    CAS  Google Scholar 

  25. Roostaei N, Tezel H (2004) Removal of phenol from aqueous solutions by adsorption. J Environ Manage 70:157–164

    PubMed  Google Scholar 

  26. Loqman A, El Bali B, El Gaidoumi A, Boularbah A, Kherbeche A, Lützenkirchen J (2021) The first application of moroccan perlite as industrial dyes removal. Silicon. https://doi.org/10.1007/s12633-021-01056-w

  27. Nagabushan S, Prakash Jai BS, Iyengar P (2011) Oxidation of Phenol, o-nitro Phenol, o-chloro Phenol and Trichloroethylene Present in Water Using Surfactant Immobilized Manganate and Impregnated Metal Cations. Silicon 3:13–26

  28. Kim S-R, Ali I, Kim J-O (2019) Phenol degradation using an anodized graphene-doped TiO2 nanotube composite under visible light. App Surf Sci 477:71–78

    CAS  Google Scholar 

  29. Xiaotong Wang J, Zhou S, Zhao X, Chen Y, Yu (2018) Synergistic effect of adsorption and visible-light photocatalysis for organic pollutant removal over BiVO4/carbon sphere nanocomposites. App Surf Sci 453:394–404

    Google Scholar 

  30. Wang T, Zhang Yan-ling, Pan Jia-hao, Li Bing-rui, Wu Li-guang, Jiang Bo-qiong (2019) Hydrothermal reduction of commercial P25 photocatalysts to expand their visible-light response and enhance their performance for photodegrading phenol in high-salinity wastewater. App Surf Sci 480:896–904

    CAS  Google Scholar 

  31. Ma D, Zhong J, Li J, Burda C, Duan R (2019) Preparation and photocatalytic performance of MWCNTs/BiOCl: Evidence for the superoxide radical participation in the degradation mechanism of phenol. App Surf Sci 480:395–403

    CAS  Google Scholar 

  32. Hameed BH, Rahman AA (2008) Removal of phenol from aqueous solutions by adsorption onto activated carbon prepared from biomass material. J Hazard Mater 160:576–581.

    CAS  PubMed  Google Scholar 

  33. Wu SZ, Li N, Zhang WD (2014) Attachment of ZnO nanoparticles onto layered double hydroxides microspheres for high performance photocatalysis. J Porous Mater 21:157–164

    CAS  Google Scholar 

  34. Mills A, Le Hunte S (1997) An overview of semiconductor photocatalysis. J Photochem Photobiol A Chem 108:1–35

    CAS  Google Scholar 

  35. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96

    CAS  Google Scholar 

  36. Fox MA, Dulay MT (1993) Heterogeneous photocatalysis. Chem Rev 93:341–357

    CAS  Google Scholar 

  37. Herrmann JM, Matos J, Disdier J, Guillard C, Laine J, Malato S, Blanco J (1999) Solar photocatalytic degradation of 4-chlorophenol using the synergistic effect between titania and activated carbon in aqueous suspension,Catal. Today 54:255–265

    CAS  Google Scholar 

  38. Corma A, Garcia H (2004) Zeolite-based photocatalystsChem Commun 13:1443–1459

    Google Scholar 

  39. Aicha B, Mohamed S, Jocelyne MB, Benedicte L, Jean-Luc B, Abdelkader B (2018) Preparation of new microporous titanium pillared kenyaite. materials active for the photodegradation of methyl orange. J Porous Mater 25:801–812

    CAS  Google Scholar 

  40. Hsien KJ, Tsai WT, Su TY (2009) Preparation of diatomite-TiO2 composite for photodegradation of bisphenol-A in water. J Sol-Gel Sci Technol 51:63–69

    CAS  Google Scholar 

  41. Xu H, Sun S, Jiang S, Wang H, Zhang R, Liu Q (2018) Effect of pretreatment on microstructure and photocatalytic activity of kaolinite/TiO2 composite. J Sol-Gel Sci Technol 87:676–684

    CAS  Google Scholar 

  42. Meng X, Qian Z, Wang H, Gao X, Zhang S, Yang M (2008) Sol-gel immobilization of SiO2/TiO2 on hydrophobic clay and its removal of methyl orange from water. J Sol-Gel Sci Technol 46:195–200

    CAS  Google Scholar 

  43. Zhao X, Meng Y, Lu X, Li X (2013) Sol-gel synthesis and catalytic property of Ce1-xTixO2 nanocomposites supported on attapulgite clay. J Sol-Gel Sci Technol 66:22–30

    CAS  Google Scholar 

  44. Liu J, Zhang G (2014) Recent advances in synthesis and applications of clay-based photocatalysts: a review. Phys Chem Chem Phys 16:8178–8192

    CAS  PubMed  Google Scholar 

  45. Perathoner S, Centi G (2010) Catalytic wastewater treatment using pillared clays. In: Gil A, Korili SA, Trujillano R, Vicente MA (eds) Pillared clays and related catalysts. Springer, New York, pp 167

  46. Chmielarz L, Gil B, Kustrowski P, Piwowarska Z, Dudek B, Michalik M (2009) Montmorillonite-based porous clay heterostructures (PCHs) intercalated with silica-titania pillars, synthesis and characterization. J Solid State Chem 182:1094–1104

    CAS  Google Scholar 

  47. Belver C, Aranda P, Martín-Luengo MA, Ruiz-Hitzky E (2012) New silica/alumina-clay heterostructures, Properties as acid catalysts. Micropor Mesopor Mater 147:157–166

    Google Scholar 

  48. Zhang J, Yan J, Sheng J (2015) Dry grinding effect on pyrophyllite-quartz natural mixture and its influence on the structural alternation of pyrophyllite. Micron 71:1–6

    PubMed  Google Scholar 

  49. Ford RG, Sparks DL (2000) The nature of Zn precipitates formed in the presence of pyrophyllite. Environ Sci Technol 34:2479–2483

    CAS  Google Scholar 

  50. Prasad M, Saxena S, Amritphale SS, Chandra N (2000) Kinetics and isotherms for aqueous lead adsorption by natural minerals. Ind Eng Chem Res 39:3034–3037

    CAS  Google Scholar 

  51. Scheidegger AM, Lamble GM, Sparks DL (1996) Investigation of Ni sorption on pyrophyllite, an XAFS study. Environ Sci Technol 30:548–554

    CAS  Google Scholar 

  52. Keren R, Sparks DL (1994) Effect of pH and ionic strength on boron adsorption by pyrophyllite. Soil Sci Soc Am J 58:1095–1100

    CAS  Google Scholar 

  53. Saxena S, Prasad M, Amritphale SS, Chandra N (2001) Adsorption of cyanide from aqueous solutions at pyrophyllite surface. Sep Purif Technol 24:263–270

    CAS  Google Scholar 

  54. El Gaidoumi A, Loqman A, ChaouniBenadallah A, El Bali B, Kherbeche A (2019) Co(II)-pyrophyllite as catalyst for phenol oxidative degradation: optimization study using response surface methodology. Waste Biomass Valor 10:1043–1051

    CAS  Google Scholar 

  55. El Gaidoumi A, Chaouni Benabdallah A, El Bali B, Kherbeche A (2018) Synthesis and characterization of zeolite HS using natural pyrophyllite as new clay source. Arab J Sci Eng 43:191–197

    CAS  Google Scholar 

  56. El Gaidoumi A, Doña-Rodríguez JM, PulidoMelián E, González-Díaz OM, El Bali B, Navío JA, Kherbeche A (2019) Mesoporouspyrophyllite-titaniananocomposites: synthesis and activity in phenol photocatalytic degradation. Res Chem Interm 45:333–353

    Google Scholar 

  57. El Gaidoumi A, Chaouni Benabdallah A, Lahrichi A, Kherbeche A (2015) Adsorption du phénol en milieu aqueux par unepyrophylliteMarocaine brute et traitée (Adsorption of phenol in aqueous medium by a raw and treated Moroccan pyrophyllite). J Mater Environ Sci 6:2247–2259

    CAS  Google Scholar 

  58. El Gaidoumi A, Doña-Rodríguez JM, PulidoMelián E, González-Díaz OM, Navío JA, El Bali B, Kherbeche A (2019) Catalytic efficiency of Cu-supported pyrophyllite in heterogeneous catalytic oxidation of phenol. Arab J Sci Eng 44:6313–6325

    Google Scholar 

  59. El Gaidoumi A, Doña Rodríguez JM, Pulido Melián E, González-Díaz OM, Navío Santos JA, El Bali B, Kherbeche A (2019) Synthesis of sol-gel pyrophyllite/TiO2heterostructures: Effect of calcinationtemperature and methanol washing onphotocatalytic activity. Surf Interfaces 14:19–25

  60. Araña J, Doña-Rodríguez JM, Portillo-Carrizo D, Fernández-Rodríguez C, Pérez-Peña J, GonzalezDiaz O, Navio JA, Macias M (2010) Photocatalytic degradation of phenolic compounds with new TiO2 catalysts. Appl Catal B Environ 100:346–354

    Google Scholar 

  61. Seck EI, Doña-Rodríguez JM, Pulido Melián E, Fernández-Rodríguez C, González-Díaz OM, Portillo-Carrizo D, Pérez-Peña J (2013) Comparative study of nanocrystalline titanium dioxide obtained through sol-gel and sol-gel-hydrothermal synthesis. J Colloid Interface Sci 400:31–40

    CAS  PubMed  Google Scholar 

  62. Seck EI, Doña-Rodríguez JM, Fernández-Rodríguez C, González-Díaz OM, Araña J, Pérez-Peña J (2012) Photocatalytic removal of 2,4-dichlorophenoxyacetic acid by using sol-gel synthesized nanocrystalline and commercial TiO2: Operational parameters optimization and toxicity studies. Appl Catal B Environ 125:28–34

    CAS  Google Scholar 

  63. González Sánchez OM, Araña J, González Díaz O, Herrera Melián JA, Doña Rodríguez JM, Pérez-Peña J (2004) Detoxification of the herbicide propanil by means of Fenton process and TiO2-photocatalysis. J Photochem Photobiol A Chem 291:34–43

    Google Scholar 

  64. Seck EI, Doña-Rodríguez JM, Fernández-Rodríguez C, González-Díaz OM, Araña J, Pérez-Peña J (2012) Photocatalytical removal of bentazon using commercial and sol-gel synthesized nanocrystalline TiO2: Operational parameters optimization and toxicity studies. Chem Eng J 203:52–62

    CAS  Google Scholar 

  65. Santiago DE, Doña-Rodríguez JM, Araña J, Fernández-Rodríguez C, González-Díaz O, Pérez-Peña J, Silva AMT (2013) Optimization of the degradation of imazalil by photocatalysis: Comparison between commercial and lab-madephotocatalysts. Appl Catal B Environ 138–139:391–400

  66. Patterson AL (1939) The Scherrer formula for X-ray particle size determination. Phys Rev 56:978–983

    CAS  Google Scholar 

  67. Spurr RA, Myers H (1957) Quantitative analysis of anatase rutile mixtures with an X-ray diffractometer. Anal Chem 29:760–762

    CAS  Google Scholar 

  68. Rivera-Utrilla J, Bautista-Toledo I, Ferro-Garcia MA, Moreno-Castilla C (2001) Activated carbon surface modifications by adsorption on bacteria and their effect on aqueous lead adsorption. J Chem Technol Biotechnol 76:1209–1215

    CAS  Google Scholar 

  69. Eisenberg G (1943) Colorimetric determination of hydrogen peroxide. Ind Eng Chem Anal Ed 15:327–328

    CAS  Google Scholar 

  70. Wang T, Wei J, Shi H, Zhou M, Zhang Y, Chen Q, Zhang Z (2017) Preparation of electrospun Ag/TiO2 nanotubes with enhanced photocatalytic activity based on water/oil phase separation. Physica E 86:103–110

    CAS  Google Scholar 

  71. Bentayeb A, Amouric M, Olives J, Dekayir A, Nadiri A (2003) XRD and HRTEM characterization of pyrophyllite from Morocco and its possible applications. Appl Clay Sci 22:211–221

    CAS  Google Scholar 

  72. Li G, Zeng J, Luo J, Liu M, Jiang T, Qiu G (2014) Thermal transformation of pyrophyllite and alkali dissolution behavior of silicon. Appl Clay Sci 99:282–288

    CAS  Google Scholar 

  73. Erdemoğlu M, Erdemoğlu S, Sayılkan F, Akarsu M, Şener Ş, Sayılkan H (2004) Organo functional modified pyrophyllite: preparation, characterisation and Pb(II) ion adsorption property. Appl Clay Sci 27:41–52

    Google Scholar 

  74. Hamzah N, Nordinc NM, Nadzri AHA, Nik YA, Kassim MB, Yarmo MA (2012) Enhanced activity of Ru/TiO2 catalyst using bisupport, bentonite-TiO2 for hydrogenolysis of glycerol in aqueous media. Appl Catal A General 419–420:133–141

  75. Zhao X, Li J, Zhang Y, Dong H, Qu J, Qi T (2015) Preparation of nanosizedanatase TiO2-coated illite composite pigments by Ti(SO4)2 hydrolysis. Powder Technol 271:262–269

    CAS  Google Scholar 

  76. X.Zhao J, Li Y, Liu Y, Zhang J, Qu T, Qi (2014) Preparation and mechanism of TiO2-coated illite composite pigments. Dyes Pigments 108:84–92

    Google Scholar 

  77. Gao L, Zhan X, Lu Y, Li J, Sun Q (2015) pH-dependent structure and wettability of TiO2-based wood surface. Mater Lett 142:217–220

    CAS  Google Scholar 

  78. Li J, Suyoulema W, Wang, Sarina (2009) A study of photodegradation of sulforhodamine B on Au-TiO2/bentoniteunder UV and visible light irradiation. Solid State Sci 11:2037–2043

    CAS  Google Scholar 

  79. Aranda P, Belver C, Ruiz-Hitzky E (2014) Inorganic heterostructured materials based on clay minerals. In: Drummy LF, Ogawa M, Aranda P (eds) Materials and clay minerals, CMS Workshop Lectures, vol 18, The Clay Minerals Society, Chantilly. https://doi.org/10.1346/CMS-WLS-18-2

  80. Sing KSW, Williams RT (2004) The use of molecular probes for the characterization of nanoporous adsorbents. Part Part Syst Charact 21:71–79

    CAS  Google Scholar 

  81. Munuera G, Moreno F, Gonzalez F (1972) In: Anderson JS, Roberts MW, Stone FS (eds) Reactivity of solids. Chapman Hall, London, p 681

  82. Munuera G, Moreno F, Gonzalez F (1972) Reactivity of solids. Chapman Hall, London

  83. Dzwigaj S, Arrouvel C, Breysse M, Geantet C, Inoue S, Toulhoat H, Raybaud P (2005) DFT makes the morphologies of Anatase-TiO2 nanoparticles visible to IR spectroscopy. J Catal 236:245–250

    CAS  Google Scholar 

  84. Vittadini A, Selloni A, Rotzinger FP, Gratzel M (1998) Structure and energetics of water adsorbed at TiO2 anatase (101) and (001) surfaces. Phys Rev Lett 81:2954–2957

    CAS  Google Scholar 

  85. Arrouvel C, Digne M, Breysse M, Toulhoat H, Raybaud P (2004) Effects of morphology on surface hydroxyl concentration: a DFT comparison of anatase–TiO2 and γ-alumina catalytic supports. J Catal 222:152–166

    CAS  Google Scholar 

  86. Ahmed S, Rasul MG, Martens WN, Brown R, Hashib MA (2010) Heterogeneous photocatalytic degradation of phenols in wastewater: A review on current status and developments. Desalination 261:3–18

    CAS  Google Scholar 

  87. Agarwal B, Balomajumder C, Kumar Thakur P (2013) Simultaneous co-adsorptive removal of phenol and cyanide from binary solution using granular activated carbon. Chem Eng J 228:655–664

    CAS  Google Scholar 

  88. Boukhatem H, Khalaf H, Djouadi L, Gonzalez FV, Navarro RM, Santaballa JA, Canle M (2017) Photocatalytic activity of mont-La (6 %)-Cu0.6Cd0.4S catalyst for phenol degradation under near UV visible light irradiation. Appl Catal B Environ 211:114–125

    CAS  Google Scholar 

  89. Ku Y, Leu RM, Lee KC (1996) Decomposition of 2-chlorophenol in aqueous solution by UV irradiation with the presence of titanium dioxide. Water Res 30:2569–2578

    CAS  Google Scholar 

  90. Mohamed F, Abukhadra MR, Shaban M (2018) Removal of safranin dye from water using poly pyrrolenano fiber/Zn-Fe layered double hydroxide nanocomposite (Ppy NF/Zn-Fe LDH) of enhanced adsorption and photocatalytic properties. Sci Total Environ 640–641:352–363

  91. Shaban M, Abukhadra MR, Hamd A, Amin RR, Abdel Khalek A (2017) Photocatalytic removal of Congo red dye using MCM-48/Ni23 composite synthesized based on silica gel extracted from rice husk ash; fabrication and application. J Environ Manag 204:189–199

    CAS  Google Scholar 

  92. Shaban M, Ashraf AM, Abukhadra MR (2018) TiO2Nanoribbons/carbon nanotubes composite with enhanced photocatalytic activity; fabrication, characterization, and application. Sci Rep 8:781. https://doi.org/10.1038/s41598-018-19172-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Shaban M, Abukhadra MR, Ibrahim SS, Shahien MG (2017) Photocatalytic degradation and photo-Fenton oxidation of Congo red dye pollutants in water using natural chromite-response surface optimization. Appl Water Sci 7:4743–4756

    CAS  Google Scholar 

  94. Gonçalves MST, Oliveira-Campos AMF, Pinto EMMS, Plasência PMS, Queiroz MJRP (1999) Photochemical treatment of solutions of azo dyes containing TiO2. Chemosphere 39:781–786

    Google Scholar 

  95. Delvin HP, Harris IJ (1984) Mechanism of the oxidation of aqueous phenol with dissolved oxygen. Ind Chem Fundam 23:387–392

    Google Scholar 

  96. Duprez D, Delanoë J, Barbier J, Isnard P, Blanchard G (1996) Catalytic oxidation of organic compounds in aqueous media. Catal Today 29:317–322

Download references

Acknowledgements

The authors would thank the Innovation Center of Sidi Mohamed Ben Abdellah University of Fez and the National Center for Scientific and Technical Research of Rabat (Morocco), for all collaborations.

Author information

Authors and Affiliations

Authors

Contributions

El Gaidoumi, Arrahli and Loqman carried out all research works supervising by Kherbeche. Baragh and El Bali participated in the interpretation of results and corrections of language.

Corresponding author

Correspondence to Abdelali El Gaidoumi.

Ethics declarations

Ethics Approval and Consent to Participate

Not applicable.

Consent for Publication

Not applicable.

Conflict of Interest

The authors declare that they have no competing interests.

Research Involving Human Participants and/or Animals

Not applicable.

Informed Consent

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El Gaidoumi, A., Arrahli, A., Loqman, A. et al. Efficient Sol-gel Nanocomposite TiO2-clay in Photodegradation of Phenol: Comparison to Labe-made and Commercial Photocatalysts. Silicon 14, 5401–5414 (2022). https://doi.org/10.1007/s12633-021-01275-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01275-1

Keywords

Navigation