Skip to main content
Log in

A Review of Engineering Techniques to Suppress Ambipolarity in Tunnel FET

  • Review Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Scaling of conventional MOSFET is hindered by the fact that the subthreshold swing cannot be reduced less than 60 mV/decade. Tunnel FET (TFET) is a promising candidate to replace conventional MOSFET due to its low subthreshold swing (SS), low OFF-state leakage and high ION/IOFF ratio. But TFET suffers from two problems, namely low ON current (ION) and ambipolarity. Due to the ambipolar behaviour, the TFET cannot be turned OFF completely for zero gate voltage which questions its applicability in complementary digital circuits. There are quite a number of techniques devised to reduce or eliminate the ambipolarity. This paper reviews the different device-engineering techniques to suppress the ambipolarity of TFET. The effect of the ambipolarity technique on the gate-drain capacitance and analog/RF performance is also discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shaker A, Sabbagh ME, E.-Banna MM (2017) Influence of drain doping engineering on the ambipolar conduction and high-frequency performance of TFETs. IEEE Trans Electron Dev 64(9):3541–3547

    Article  CAS  Google Scholar 

  2. Wang Q, Liu H, Wang S, Chen S (2018) TCAD Simulation of single-event-transient effects in L-shaped channel tunneling field-effect transistors. IEEE Trans Nucl Sci 65(8):2250–2259

    Article  CAS  Google Scholar 

  3. Appenzeller J, Lin YM, Knoch J, Avouris P (2004) Band-to-band tunneling in carbon nanotube field-effect transistors. Phys Rev Lett 19:93

    Google Scholar 

  4. Kim SH, Kam H, Hu C, Liu T-JK (2009) Germanium-source tunnel field effect transistors with record high ION/IOFF,” 2009 Symposium on VLSI Technology, pp 178–179

  5. Lattanzio L, Michielis LD, Ionescu AM (2012) Complementary germanium electron–hole bilayer tunnel FET for sub-0.5-V operation. IEEE Electron Dev Lett 33(2):167–169

    Article  CAS  Google Scholar 

  6. Joshi T, Singh Y, Singh B (2020) Extended-source double-gate tunnel FET with improved DC and analog/RF performance. IEEE Trans Electron Dev 67(4):1873–1879

    Article  CAS  Google Scholar 

  7. Yadav R, Dan SS, Vidhyadharan S, Hariprasad S (2020) Suppression of ambipolar behavior and simultaneous improvement in RF performance of gate-overlap tunnel field effect transistor (GOTFET) devices. Silicon 1–3

  8. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-k gate dielectric. IEEE Trans Electron Dev 54(7):1725–1733

    Article  CAS  Google Scholar 

  9. Jang JS, Choi WY (2011) Ambipolarity factor of tunneling field-effect transistors (TFETs). JSTS: J Semicond Technol Sci 11(4):272–277

    Article  Google Scholar 

  10. Bagga N, Kumar A, Dasgupta S (2017) Demonstration of a novel two source region tunnel FET. IEEE Trans Electron Dev 64(12):5256–5262

    Article  CAS  Google Scholar 

  11. Hraziia, Vladimirescu A, Amara A, Anghel C (2012) An analysis on the ambipolar current in Si double-gate tunnel FETs. Solid State Electron 70:67–72

    Article  CAS  Google Scholar 

  12. Saurabh S, Kumar MJ (2011) Novel attributes of a dual material gate nanoscale tunnel field-effect transistor. IEEE Trans Electron Dev 58(2):404–410

    Article  CAS  Google Scholar 

  13. Nigam K, Kondekar P, Sharma D (2016) Approach for ambipolar behaviour suppression in tunnel FET by workfunction engineering. Micro Nano Lett 11(8):460–464

    Article  CAS  Google Scholar 

  14. Ranjith R, Komaragiri RS, Suja KJ (2016) Reconfigurable tunnel field effect transistor exhibiting reduced ambipolar behaviour. In: Proc. 2016 IEEE Annual India Conference (INDICON) Bangalore, pp 1–5

  15. Verhulst AS, Vandenberghe WG, Maex K, Groeseneken G (2007) Tunnel field-effect transistor without gate-drain overlap. Applied Physics Letters 91(5):053102–1–053102-3

    Article  Google Scholar 

  16. Singh P, Chauhan VK, Ray DD, Dash S, Mishra GP (2018) Ambipolar performance improvement of dual material TFET using drain underlap engineering. In: Proc. 2018 IEEE electron devices kolkata conference (EDKCON), Kolkata, pp 274–277

  17. Abdi DB, Kumar MJ (2014) Controlling ambipolar current in tunneling FETs using overlapping gate-on-drain. IEEE J Electron Dev Soc 2(6):187–190

    Article  Google Scholar 

  18. Garg S, Saurabh S (2019) Improving the scalability of SOI-based tunnel FETs using ground plane in buried oxide. IEEE J Electron Dev Soc 7:435–433

    Article  CAS  Google Scholar 

  19. Pandey CK, Singh A, Chaudhury S (2020) Effect of asymmetric gate-drain overlap on ambipolar behavior of double-gate TFET and its impact on HF performances. Appl Phys A 126(3):1–12

    Article  Google Scholar 

  20. Pandey CK, Chaudhury S (2019) A novel structure of double-gate tunnel FET with extended back gate for improved device performances. In: Proc. 2019 2nd international conference on innovations in electronics, signal processing and communication (IESC), Shillong pp 17–75

  21. Anghel C, Hraziia A, Amara A (2011) A Gupta Vladimirescu ”30-nm tunnel FET with improved performance and reduced ambipolar current. IEEE Trans Electron Dev 58(6):1649–1654

    Article  CAS  Google Scholar 

  22. Wang CPF, Hilsenbeck K, Nirschl T, Oswald M, Stepper C, Weis M, -Landsiedel DS, Hansch W (2004) Complementary tunneling transistor for low power application. Solid State Electron 58 (12):2281–2286

    Article  Google Scholar 

  23. Vijayvargiya V, Vishvakarma SK (2014) Effect of drain doping profile on double-gate tunnel field-effect transistor and its influence on device RF performance. IEEE Trans Nanotechnol 13(5):974–981

    Article  CAS  Google Scholar 

  24. Teng S. -C., Su Y. -S., Wu Y. -H. (2019) Design and simulation of improved swing and ambipolar effect for tunnel FET by band engineering using metal silicide at drain side. IEEE Trans Nanotechnol 18:274–278

    Article  CAS  Google Scholar 

  25. Pandey CK, Dash D, Chaudhury S (2018) Impact of dielectric pocket on analog and high-frequency performances of cylindrical gate-all-around tunnel FETs. ECS J Solid State Sci Technol 7(5):N59–N66

    Article  CAS  Google Scholar 

  26. Pandey CK, Dash D, Chaudhury S (2019) Approach to suppress ambipolar conduction in tunnel FET using dielectric pocket. Micro Nano Lett 14(1):86–90

    Article  CAS  Google Scholar 

  27. Garg S, Saurabh S (2018) Suppression of ambipolar current in tunnel FETs using drain-pocket: proposal and analysis. Superlattice Microst 113:261–270

    Article  CAS  Google Scholar 

  28. Choi WY, Lee W (2010) Hetero-gate-dielectric tunneling field-effect transistors. IEEE Trans Electron Dev 57(9):2317–2319

    Article  Google Scholar 

  29. Lee MJ, Choi WY (2012) Effects of device geometry on hetero-gate-dielectric tunneling field-effect transistors. IEEE Electron Dev Lett 33(10):1459–1461

    Article  CAS  Google Scholar 

  30. Kumar S, Goel E, Singh K, Singh B, Singh PK, Baral K, Jit S. (2017) 2-D analytical modeling of the electrical characteristics of dual-material double-gate TFETs with a sio2/hfo2 stacked gate-oxide structure. IEEE Trans Electron Dev 64(3):960–968

    Article  CAS  Google Scholar 

  31. Ahmad SA, Alam N (2020) Suppression of ambipolarity in tunnel-FETs using gate oxide as parameter: analysis and investigation. IET Circuits Dev Syst 14(3):288–293

    Article  Google Scholar 

  32. Liu M, Xie Q, Xia S, Wang Z (2019) A novel step-shaped gate tunnel FET with low ambipolar current. In: Proc. 2019 2nd International symposium on devices, circuits and systems (ISDCS), Higashi-Hiroshima, pp 1–4

  33. Sahay S, Kumar MJ (2015) Controlling the drain side tunneling width to reduce ambipolar current in tunnel FETs using heterodielectric BOX. IEEE Trans Electron Dev 62(11):3882–3886

    Article  Google Scholar 

  34. Wan J, Royer CL, Zaslavsky A, Cristoloveanu S (2010) SOI TFETs: suppression of ambipolar leakage and low-frequency noise behavior. In: Proc. 2010 Proceedings of the European solid state device research conference, Sevilla, pp 341–344

  35. Morgan Y, Abouelatta M, -Banna ME, Shaker A (2020) Tapered-shape channel engineering for suppression of ambipolar current in TFET. In: Proc. 2020 IEEE 5th international conference on integrated circuits and microsystems (ICICM), Nanjing, pp 197–200

  36. Roy A, Goswami B, Dey U, Gayen D, Reja W, Sarkar SK (2020) Impact of trapezoidal channel in double-gate tunnel field effect transistor on ambipolar conduction for ultra low-power application. In: Proc. 2020 17th International conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON), Phuket, pp 380–383

  37. Zhang M, Guo Y, Zhang J, Yao J, Chen J (2020) Simulation study of the double-gate tunnel field-effect transistor with step channel thickness. Nanoscale Res Lett 15(1):1–9

    Article  CAS  Google Scholar 

  38. Raad B, Nigam K, Sharma D, Kondekar P (2016) Dielectric and work function engineered TFET for ambipolar suppression and RF performance enhancement. Electron Lett 52(9):770–772

    Article  CAS  Google Scholar 

  39. Madan J, Chaujar R (2016) Gate drain-overlapped-asymmetric gate dielectric-GAA-TFET: a solution for suppressed ambipolarity and enhanced ON state behavior. Appl Phys A 122(11):1–9

    Article  CAS  Google Scholar 

  40. Narang R, Saxena M, Gupta RS, Gupta M (2012) Assessment of ambipolar behavior of a tunnel FET and influence of structural modifications. JSTS: J Semicond Technol Sci 12(4):482–491

    Article  Google Scholar 

  41. Shaikh MRU, Loan SA (2019) Drain-engineered TFET with fully suppressed ambipolarity for high-frequency application. IEEE Trans Electron Dev 66(4):1628–1634

    Article  Google Scholar 

  42. Yang Y, Tong X, Yang L-T, Guo P-F, Fan L, Yeo Y-C (2010) Tunneling field-effect transistor: capacitance components and modeling. IEEE Electron Dev Lett 31(7):752–754

    Article  CAS  Google Scholar 

  43. Bagga N, Chauhan N, Gupta D, Dasgupta S (2019) A novel twofold tunnel FET with reduced miller capacitance: proposal and investigation. IEEE Trans Electron Dev 66(7):3202–3208

    Article  CAS  Google Scholar 

  44. Singh KS, Kumar S, Nigam K (2020) Impact of interface trap charges on analog/RF and linearity performances of dual-material gate-oxide-stack double-gate TFET. IEEE Trans Dev Mater Reliab 20 (2):404–412

    Article  CAS  Google Scholar 

  45. Synopsys sentaurus TCAD tools. https://www.synopsys.com/silicon/tcad.html. Accessed 1 Feb 2021

  46. Madan J, Chaujar R (2017) Gate drain underlapped-PNIN-GAA-TFET for comprehensively upgraded analog/RF performance. Superlattice Microst 102:17–26

    Article  CAS  Google Scholar 

  47. Upasana, Narang R, Saxena M, Gupta M (2016) Linearity and analog performance realization of energy-efficient TFET-based architectures: an optimization for RFIC design. IETE Tech Rev 33(1):23–28

    Article  Google Scholar 

  48. Madan J, Gupta RS, Chaujar R (2017) Mathematical modeling insight of hetero gate dielectric-dual material gate-GAA-tunnel FET for VLSI/analog applications. Microsyst Technol 23(9):4091–4098

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The first author (Pasupathy K. R.) gratefully acknowledges the post-doctoral fellowship offered by NIT Trichy. The second author (Manivannan T. S.) sincerely thanks the NIT Trichy for providing financial assistance through Research Assistantship.

Author information

Authors and Affiliations

Authors

Contributions

Pasupathy K. R. has collected, analysed and organized the information. Manivannan T. S. contributed towards analysis and simulation. Lakshminarayanan G. provided valuable insights and suggestions during manuscript preparation and revision. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Pasupathy K. R..

Ethics declarations

Declarations

The manuscript follows all the ethical standards, including plagiarism.

Consent for Publication

Yes.

Conflict of Interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

R., P.K., S., M.T. & G., L. A Review of Engineering Techniques to Suppress Ambipolarity in Tunnel FET. Silicon 14, 1887–1894 (2022). https://doi.org/10.1007/s12633-021-01018-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-021-01018-2

Keywords

Navigation