Skip to main content
Log in

Study of Grass Shoot-Shape Silicon Nanowires Grown by Thermal Chemical Vapor Deposition

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Grass shoot-shape silicon nanowires (SiNWs) with sharp tip have been successfully synthesized on an n-type Si (111) substrates at temperatures of 700 °C and various times using a thermal chemical vapor deposition (TCVD) technique. Au thin film (~10 nm thick) as catalyst were deposited on Si (111) substrates by a radio frequency magnetron sputtering system. Effect of the growth time on morphology of SiNWs has been reported. The morphologies, growth mechanism, homogeneity and crystalline structure of the nanowires were studied by Scanning Electron Microscopy (SEM), Transmission Electron Microscopy (TEM), X-ray diffractometer (XRD) and Raman spectroscopy. SEM images depict morphology of wires in form of nanoneedles (NNs) with base diameter of 60 nm, tip diameter of ∼5 nm and length up to 3 μm. TEM analysis revealed that the nanowires have core-shell structure with Au nanoparticles on the tip. Raman spectrum of as-grown SiNNs exhibited a transverse optical (TO) phonon mode. The obtained results have shown radius and length of the SiNNs increased with increase in growth time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zeng XB, Xu YY, Zhang SB, Hu ZH, Diao HW (2003) Silicon nanowires grown on a preannealed Si substrate. J Cryst Growth 247:13–14

    Article  CAS  Google Scholar 

  2. Wang Y, Schmidt V, Senz S, Gösele U (2006) Epitaxial growth of silicon nanowires using an aluminum catalyst. Nature Nanotech 1:186–189

    Article  CAS  Google Scholar 

  3. Kim BS, Tamboli SH, Han JB, Kim TW, Cho HH (2015) Broadband radiative energy absorption using a silicon nanowire forest with silver nanoclusters for thermal energy conversion. Int J Heat Mass Transf 87:267–272

    Article  Google Scholar 

  4. Tao B, Zhang J, Miao F, Li H, Wan L, Wang Y (2009) Capacitive humidity sensors based on Ni/SiNWs nanocomposites. Sens Actuat B: Chem 136(1):144–150

    Article  CAS  Google Scholar 

  5. Sturmberg BCP, Dossou KB, Botten LC, Asatryan AA, Poulton CG, de Sterke CM, McPhedran RC (2011) Modal analysis of enhanced absorption in silicon nanowire arrays. Opt Express 19:A1067–A1081

    Article  CAS  Google Scholar 

  6. Molaei R, abadi I, Saremi M (2018) A resonant tunneling nanowire field effect transistor with physical contractions: a negative differential resistance device for low power very large scale integration applications. J Electron Mater 47(2):1091–1098

    Article  Google Scholar 

  7. Naama S, Hadjersi T, Keffous A, Nezzal G (2015) CO2 gas sensor based on silicon nanowires modified with metal nanoparticles. Mater Sci Semicond Process 38:367–372

    Article  CAS  Google Scholar 

  8. Moulai F, Hadjersi T, Ifires M, Khen A, Rachedi N (2019) Enhancement of electrochemical capacitance of silicon nanowires arrays (SiNWs) by modification with manganese dioxide MnO2. Silicon 11:2799–2810

    Article  CAS  Google Scholar 

  9. Ifiresa M, Hadjersia T, Chegrouneb R, Lamrania S, Fatsaha M, Mebarkia M, Manseria A (2019) One-step electrodeposition of superhydrophobic NiO-co(OH)2 urchin-like structures on Si nanowires as photocatalyst for RhB degradation under visible light. J Alloys Compd 774:908–917

    Article  Google Scholar 

  10. Liu ZQ, Zhou WY, Sun LF, Tang DS, Zou XP, Li YB, Wang CY, Wang G, Xie SS (2001) Array-orderly single crystalline silicon nano-wires. Chem Phys Lett 341:523–528

    Article  CAS  Google Scholar 

  11. Pan L, Lew K, Redwing JM, Dickey EC (2005) Effect of diborane on the microstructure of boron-doped silicon nanowires. J Cryst Growth 277:428–436

    Article  CAS  Google Scholar 

  12. Hofmann S, Ducati C, Neill RJ, Piscanec S, Ferrari AC, Geng J, Dunin-Borkowski RE, Robertson J (2003) Gold catalyzed growth of silicon nanowires by plasma enhanced chemical vapor deposition. J Appl Phys 94:6005–6012

    Article  CAS  Google Scholar 

  13. Shugurov KY, Reznik RR, Mozharov AM, Kotlyar KP, Koval OY, Osipov AV, Fedorov VV, Shtrom IV, Bolshakov AD, Kukushkin SA, Mukhin IS, Cirlin GE (2019) Study of SiC buffer layer thickness influence on photovoltaic properties of n-GaN NWs/SiC/p-Si heterostructure. Mater Sci Semicond Process 90:20–25

    Article  CAS  Google Scholar 

  14. Saron KMA, Hashim MR (2013) Study of using aqueous NH3 to synthesize GaN nanowires on Si (111) by thermal chemical vapor deposition. Mater Sci Eng B 178(5):330–335

    Article  CAS  Google Scholar 

  15. Klimovskaya AI, Kalashnyk Y, Voroshchenko AT, Oberemok OS, Pedchenko YM, Lytvyn PM (2018) Growth of silicon self-assembled nanowires by using gold-enhanced CVD technology. Semiconduct Phys Quant Electron Optoelectron 21(3):282–287

    Article  CAS  Google Scholar 

  16. Westwater J, Gosain DP, Tomiya S, Usui S, Ruda H (1997) Growth of silicon nanowires via gold/silane vapor–liquid–solid reaction. J Vac Sci Technol B 15(3):554–557

    Article  CAS  Google Scholar 

  17. Klimovskaya AI, Prokopenko IV, Ostrovskii IP (2001) Wire-like submicron crystal as a natural heterostructure. J Phys Condens Matter 13:5923–5930

    CAS  Google Scholar 

  18. Klimovskaya AI, Prokopenko IV, Svechnikov SV, Cherneta TG, Oberemok A, Ostrovskii IP, Kurnosikov OV (2002) The structure, composition, and chemical state of the surface of wire-like silicon nanocrystal grown by self-organization technology. J Phys Condens Matter 14:1735–1743

    Article  CAS  Google Scholar 

  19. Albuschies J, Baus M, Winkler O, Hadam B, Spangenberg B, Kurz H (2006) High-density silicon nanowire growth from self-assembled au nanoparticles. Microelectron Eng 83:1530–1533

    Article  CAS  Google Scholar 

  20. Chen WH, Lardé R, Cadel E, Xu T, Grandidier B, Nys JP, Stiévenard D, Pareige P (2010) Study of the effect of gas pressure and catalyst droplets number density on silicon nanowires growth, tapering, and gold coverage. J Appl Phys 107:084902

    Article  Google Scholar 

  21. Shakthivel D, Raghavan S (2012) Vapor-liquid-solid growth of Si nanowires: a kinetic analysis. J Appl Phys 112:024317

    Article  Google Scholar 

  22. Salhi B, Grandidier B, Boukherroub R (2006) Controlled growth of silicon nanowires on silicon surfaces. J Electroceram 16:15–21

    Article  CAS  Google Scholar 

  23. Kawashima T, Mizutani T, Nakagawa T, Torii H, Saitoh T, Komori K, Fujii M (2008) Control of surface migration of gold particles on Si nanowires. Nano Lett 8(1):362–368

    Article  CAS  Google Scholar 

  24. Schmid H, Björk MT, Knoch J, Riel H, Riess W, Rice P, Topuria T (2008) Patterned epitaxial vapor-liquid-solid growth of silicon nanowires on Si(111) using silane. J Appl Phys 103:024304

    Article  Google Scholar 

  25. Wagner RS, Ellis WC (1964) Vapor-liquid-solid mechanism of single crystal growth. Appl Phys Lett 4:89–90

    Article  CAS  Google Scholar 

  26. Colli A, Fasoli A, Beecher P, Servati P (2007) Thermal and chemical vapor deposition of Si nanowires: shape control, dispersion, and electrical properties. J Appl Phys 102:034302

    Article  Google Scholar 

  27. Christiansen SH, Becker M, Fahlbusch S (2007) Signal enhancement in nano-Raman spectroscopy by gold caps on silicon nanowires obtained by vapour–liquid–solid growth. Nanotechnology. 18:035503

    Article  CAS  Google Scholar 

  28. Yu L, Donnell BO, Alet PJ, Conesa-Boj S, Peir F, Arbiol J (2009) Plasma enhanced low temperature growth of silicon nanowires and hierarchical structures by using tin and indium catalysts. Nanotechnology 20:225604–225606

    Article  Google Scholar 

  29. He R, Yang P (2006) Giant piezoresistance effect in silicon nanowires. Nat Nanotechnol 1:42–46

    Article  CAS  Google Scholar 

  30. Li D, Wu Y, Fan R, Yang P, Majumdar A (2003) Thermal conductivity of Si/SiGe superlattice nanowires. Appl Phys Lett 83:3186

    Article  CAS  Google Scholar 

  31. He R, Yang P (2006) High performance silicon nanowire field effect transistors. Nat Nanotechnol 1:42

    Article  CAS  Google Scholar 

  32. Y. Qin, F. Li, D. Liu, H. Yan, J. Wang, “Deyan He The structure and optical properties of silicon nanowires prepared by inductively coupled plasma chemical vapor deposition,” Mater Lett, 65, 1117–1119, (2011)

    Article  CAS  Google Scholar 

  33. Liu ZQ, Xie SS, Zhou WY, Sun LF, Li YB, Tang DS, Zou XP, Wang CY, Wang G (2001) Catalytic synthesis of straight silicon nanowires over Fe containing silica gel substrates by chemical vapor deposition. J Cryst Growth 224:230–234

    Article  CAS  Google Scholar 

  34. Piscanec S, Ferrari AC, Cantoro M, Hofmann S, Zapien JA, Lifshitz Y, Lee ST, Robertson J (2003) Raman Spectrum of silicon nanowires. Mater Sci Eng C 23:931–934

    Article  Google Scholar 

  35. Han L, Zeman M, Smets AHM (2015) Raman study of laser-induced heating effects in free-standing silicon nanocrystals. Nanoscale 7:8389–8397

    Article  CAS  Google Scholar 

  36. Al-Taay HF, Mahdi MA, Parlevliet D, Hassan Z, Jennings P (2013) Structural and optical properties of au-catalyzed SiNWs grown using pulsed plasma-enhanced chemical vapour deposition. Superlattice Microst 61:134–145

    Article  CAS  Google Scholar 

  37. Givargizov EI (1975) Fundamental aspects of VLS growth. J Cryst Growth 31:20

    Article  CAS  Google Scholar 

  38. Hu J, Ouyang M, Yang P, Lieber CM (1999) Controlled growth and electrical properties of heterojunctions of carbon nanotubes and silicon nanowires. Nature 399:48–51

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Habib Hamidinezhad.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hamidinezhad, H., Mozafari, H. & Naseri, R.S. Study of Grass Shoot-Shape Silicon Nanowires Grown by Thermal Chemical Vapor Deposition. Silicon 14, 177–182 (2022). https://doi.org/10.1007/s12633-020-00802-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00802-w

Keywords

Navigation