Skip to main content
Log in

Identification of the Silica Nanoparticles Appeared in the Slurry Generated during the Sawing Step to Manufacture the Photovoltaic Cells

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The great growth of the photovoltaic panels industry generates an important amount of slurry during the sawing step, two techniques are used: metallic wire sawing and diamond wire sawing. The metallic wire sawing slurry can mainly contain particles of pure silicon up to 40% Wt, particles of silicon carbide (SiC) which are used as an abrasive element during sawing, metallic impurities based on iron (Fe) which come from the wire, polyethylene glycol (PEG) which is used as a lubricant. However, the sawing stage determines the cost of producing photovoltaic cells, so its recovery has become a necessity. For this purpose, we are interested to study the chemical behavior of the input elements involved in the composition of the slurry. For that, the pH of the slurry was measured for 7 days during its storage. Then, it was washed with acetone to dissolve the polyethylene glycol and separate the liquid phase from the solid one. Solid phase was dried at 70 °C to obtain a slurry powder. This powder has been characterized by ATR-FTIR spectroscopy, Raman spectroscopy and the X-ray diffractometer. The liquid phase has been characterized by ATR-FTIR, Raman and TGA analysis. The results confirm the chemical instability of the slurry and the appearance of nanoparticles that have been identified.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang TY, Lin YC, Tai CY, Fei CC, Tseng MY, Lan CW (2009) Recovery of silicon from kerf loss slurry waste for photovoltaic applications. Prog Photovolt Res Appl 17:155–163. https://doi.org/10.1002/pip.863

    Article  CAS  Google Scholar 

  2. Wang HY, Tan Y, Li JY, Li YQ, Dong W (2012) Removal of silicon carbide from kerf loss slurry by Al–Si alloying process. Sep Purif Technol 89:91–93. https://doi.org/10.1016/j.seppur.2012.01.021

    Article  CAS  Google Scholar 

  3. Chigondo F (2018) From metallurgical-grade to solar-grade silicon: an overview. Silicon 10(3):789–798. https://doi.org/10.1007/s12633-016-9532-7

    Article  CAS  Google Scholar 

  4. Wu H (2016) Wire sawing technology: a state-of-the-art review. J Precision Eng 43:1–9. https://doi.org/10.1016/j.precisioneng.2015.08.008

    Article  CAS  Google Scholar 

  5. Horio M (2003) Recycling system of wire saw abrasive grain slurry and centrifugal separators therefor. U.S. Patent 6:615–817

    Google Scholar 

  6. Tzu-Hsuan T, Jui-Hsiung H (2009) Metal removal from silicon sawing waste using the electrokinetic method. J Taiwan Inst Chem Eng 40:1–5. https://doi.org/10.1016/j.jtice.2008.07.005

    Article  CAS  Google Scholar 

  7. Meng H, Zhou L (2014) Mechanical behavior of diamond-sawn multi-crystalline silicon wafers and its improvement. Silicon 6(2):129–135. https://doi.org/10.1007/s12633-013-9170-2

    Article  CAS  Google Scholar 

  8. Bogacka M, Pikon K, Landrat M (2017) Environmental impact of PV cell waste scenario. J. Waste Manag 70:198–203. https://doi.org/10.1016/j.wasman.2017.09.007

    Article  CAS  PubMed  Google Scholar 

  9. Xu Y, Li J, Tan Q, Peters AL, Yang C (2018) Global status of recycling waste solar panels: a review. J. Waste Manag 75:450–458. https://doi.org/10.1016/j.wasman.2018.01.036

    Article  CAS  PubMed  Google Scholar 

  10. Andrews RN, Clarson SJ (2015) Pathways to solar grade silicon. Silicon 7:303–305. https://doi.org/10.1007/s12633-014-9235-x

    Article  CAS  Google Scholar 

  11. Hachichi K, Lami A, Zemmouri H, Cuellar P, Soni R, Ait-Amar H, Drouiche N (2018) Silicon recovery from kerf slurry waste: a review of current status and perspective. Silicon 10(4):1579–1589. https://doi.org/10.1007/s12633-017-9642-x

    Article  CAS  Google Scholar 

  12. Wang TY, Lin YC, Tai CY, Sivakumar R, Rai DK, Lan CW (2008) A novel approach for recycling of kerf loss silicon from cutting slurry waste for solar cell applications. J Cryst Growth 310:3403–3406. https://doi.org/10.1016/j.jcrysgro.2008.04.031

    Article  CAS  Google Scholar 

  13. Tsai T (2011) Silicon sawing waste treatment by electrophoresis and gravitational settling. J Hazard Mater 189:526–530. https://doi.org/10.1016/j.jhazmat.2011.02.070

    Article  CAS  PubMed  Google Scholar 

  14. Tomono K, Furuya H, Miyamoto S, Okamura Y, Sumimoto M, Sakata Y, Komatsu R, Nakayama M (2013) Investigations on hydrobromination of silicon in the presence of silicon carbide abrasives as a purification route of kerf loss waste. Sep Purif Technol 103:109–113. https://doi.org/10.1016/j.seppur.2012.10.031

    Article  CAS  Google Scholar 

  15. Liu S, Huang K, Zhu H (2013) Recovery of silicon powder from silicon wire sawing slurries by tuning the particle surface potential combined with centrifugation. Sep Purif Technol 118:448–454. https://doi.org/10.1016/j.seppur.2013.07.011

    Article  CAS  Google Scholar 

  16. Xing P, Guo J, Zhuang Y, Li F, Tu G (2013) Rapid recovery of polycrystalline silicon from kerf loss slurry using double-layer organic solvent sedimentation method. Int J Miner Metall Mater 20:947–952. https://doi.org/10.1007/s12613-013-0819-z

    Article  CAS  Google Scholar 

  17. Hsu HP, Huang WP, Yang CF, Lan CW (2014) Silicon recovery from cutting slurry by phase transfer separation. Sep Purif Technol 133:1–7. https://doi.org/10.1016/j.seppur.2014.06.037

    Article  CAS  Google Scholar 

  18. Yang CF, Hsu HP, Lan CW (2015) A rapid thermal process for silicon recycle and refining from cutting kerf-loss slurry waste. Sep Purif Technol 149:38–46. https://doi.org/10.1016/j.seppur.2015.05.030

    Article  CAS  Google Scholar 

  19. Wei X, Yin C, Wan Y, Zhou L (2015) Effect of wet oxidation on recovery of silicon from wire saw slurry by liquid–liquid extraction. Sep Purif Technol 149:457–461. https://doi.org/10.1016/j.seppur.2015.06.019

    Article  CAS  Google Scholar 

  20. De Sousa M, Vardelle A, Mariaux G, Vardelle M, Michon U, Beudin V (2016) Use of a thermal plasma process to recycle silicon kerf loss to solar-grade silicon feedstock. Sep Purif Technol 161:187–192. https://doi.org/10.1016/j.seppur.2016.02.005

    Article  CAS  Google Scholar 

  21. Li X, Wu J, Xu M, Ma W (2019) Separation and purification of silicon from cutting kerf-loss slurry waste by electromagnetic and slag treatment technology. J Clean Prod 211:695–703. https://doi.org/10.1016/j.jclepro.2018.11.195

    Article  CAS  Google Scholar 

  22. Liu Y, Kong J, Zhuang Y, Xing P, Yin H, Luo X (2019) Recycling high purity silicon from solar grade silicon cutting slurry waste by carbothermic reduction in the electric arc furnace. J Clean Prod 224:709–718. https://doi.org/10.1016/j.jclepro.2019.03.187

    Article  CAS  Google Scholar 

  23. Kong J, Xing P, Liu Y, Wang J, Jin X, Feng Z, Luo X (2018) An economical approach for the recycling of high-purity silicon from diamond-wire saw kerf slurry waste. Silicon 11(1):367–376. https://doi.org/10.1007/s12633-018-9889-x

    Article  CAS  Google Scholar 

  24. Park KY, Park HK, Ko BW, Kang TW, Jang HD (2013) Recycling of SiC − Si sludge to silicon tetrachloride and porous carbon via chlorination. Ind Eng Chem Res 52:3943–3946. https://doi.org/10.1021/ie302699g

    Article  CAS  Google Scholar 

  25. Bao Q, Huang YH, Lan C, Chen B, Duh J (2015) Scalable upcycling silicon from waste slicing sludge for high-performance lithium-ion battery anodes. Electrochim Acta 173:82–90. https://doi.org/10.1016/j.electacta.2015.04.155

    Article  CAS  Google Scholar 

  26. Jang HD, Kim H, Chang H, Kim J, Roh K, Choi J, Cho B, Park E, Kim H, Luo J, Huang J (2015) Aerosol-assisted extraction of silicon nanoparticles from wafer slicing waste for lithium ion batteries. Sci Rep 5:9431. https://doi.org/10.1038/srep09431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ding H, Li J, Gao Y, Zhao D, Shi D, Mao G, Liu S, Tan X (2015) Preparation of silica nanoparticles from waste silicon sludge. Powder Technol 284:231–236. https://doi.org/10.1016/j.powtec.2015.06.063

    Article  CAS  Google Scholar 

  28. Hossain ST, Johra FT, Jung W (2018) Fabrication of silicon carbide from recycled silicon wafer cutting sludge and its purification. Appl Sci 8:1841. https://doi.org/10.3390/app8101841

    Article  CAS  Google Scholar 

  29. Hua Q, Dai D, Zhang C, Han F, Lv T, Li X, Wang S, Zhu R, Liao H, Zhang S (2018) Transformation of sludge Si to nano-Si/SiOx structure by oxygen inward diffusion as precursor for high performance anodes in lithium ion batteries. Nanoscale Res Lett 13:134. https://doi.org/10.1186/s11671-018-2549-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Guo J, Liu Y, Liu L, Liu J, Kong J, Wang S, Jiang S, Xing P (2020) A low-cost and facile method to recycle silicon carbide particles from the solar grade silicon slicing wastes. Silicon. https://doi.org/10.1007/s12633-019-00334-y

  31. Hachichi K, Zemmouri H, Tara A, Drouiche N, Ait Amar H, Jbara O (2020, 2020) Separation of Si and SiC from photovoltaic industry waste. Recycling of SiC in production of Cu2O-SiC powder. Silicon. https://doi.org/10.1007/s12633-020-00442-0

  32. Sergiienko SA, Pogorelov BV, Daniliuk VB (2014) Silicon and silicon carbide powders recycling technology from wire-saw cutting waste in slicing process of silicon ingots. Sep Purif Technol 133:16–21. https://doi.org/10.1016/j.seppur.2014.06.036

    Article  CAS  Google Scholar 

  33. Hecini M, Drouiche N, Bouchelaghem O (2016) Recovery of cutting fluids used in polycrystalline silicon ingot slicing. J Cryst Growth 453:143–150. https://doi.org/10.1016/j.jcrysgro.2016.08.035

    Article  CAS  Google Scholar 

  34. Liu S, Huang K, Zhu H (2017) Source of boron and phosphorus impurities in the silicon wire sawing slurry and their removal by acid leaching. Sep Purif Technol 172:113–118. https://doi.org/10.1016/j.seppur.2016.07.048

    Article  CAS  Google Scholar 

  35. Boutouchent-Guerfi N, Drouiche N, Medjahed S, Ould-Hamou M, Sahraoui F (2016) Disposal of metal fragments released during polycrystalline slicing by multi-wire saw. J Cryst Growth 447:27–30. https://doi.org/10.1016/j.jcrysgro.2016.04.017

    Article  CAS  Google Scholar 

  36. Boutouchent-Guerfi N, Boussourdi MA, Lami A, Ould-Hamou M, Drouiche N (2020) Dry magnetic separation on the recovery of metal fragments from kerf slurry waste produced during the manufacture of photovoltaic solar cells. Silicon. https://doi.org/10.1007/s12633-020-00412-6

  37. Liu Y, Xing P, Liu J, Kong J, Du X, Gao B, Luo X (2019) Removal of iron from solar grade silicon (SoG-Si) cutting slurry waste by ultrasound-assisted leaching with dilute sulfuric acid. Silicon 11:301–311. https://doi.org/10.1007/s12633-018-9856-6

    Article  CAS  Google Scholar 

  38. Royer T, Barriere JCG (2015) The degradation of poly(ethylene glycol) in an Inconel 718 feedstock in the metal injection moulding process. Powder Technol 284:467–474. https://doi.org/10.1016/j.powtec.2015.07.032

    Article  CAS  Google Scholar 

  39. Finocchio E, Cristiani C, Dotelli G, Stampino PG, Zampori L (2014) Thermal evolution of PEG-based and BRIJ-based hybrid organo-inorganic materials. FT-IR studies. Vib Spectrosc 71:47–56. https://doi.org/10.1016/j.vibspec.2013.12.010

    Article  CAS  Google Scholar 

  40. Han S, Kimb C, Kwon D (1995) Thermal degradation of poly(ethyleneglycol). Polym Degrad Stabil 41:203–208. https://doi.org/10.1016/0141-3910(94)00109-L

    Article  Google Scholar 

  41. SUZUKI J (1976) Study on ozone treatment of water-soluble polymers. J Appl Polym Sci 20:93–103. https://doi.org/10.1002/app.1976.070200109

    Article  CAS  Google Scholar 

  42. Samitier J, Marco S, Ruiz J, Morante R (1992) Analysis by FT-IR spectroscopy of SiO,-polycrystalline structures used in micromechanics: stress measurements. Sensor Acruat A-Phys 32:347–353. https://doi.org/10.1016/0924-4247(92)80010-Z

    Article  Google Scholar 

  43. Yu LY, Xu ZL, Shen HM, Yang H (2009) Preparation and characterization of PVDF–SiO2 composite hollow fiber UF membrane by sol–gel method. J Membr Sci 337:257–265. https://doi.org/10.1016/j.memsci.2009.03.054

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by DGRSDT of the Ministry of Higher Education and Scientific Research (MESRS) of Algeria and Centre de Recherche en Technologie des Semi-conducteurs pour l’énergétique (CRTSE). The authors would like to thank BENCHAIB Welid Eddine (EMP), ACHLEF Tarek (EMP) and Amar Mansri (CRTSE) for their cooperation to carry out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nabila Boutouchent-Guerfi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Silicon ingot cutting process generates slurry in large quantities that will not be thrown into the environment and not be cremated, and recovering its input elements has become a challenge;

• pH variation of the slurry indicates its chemical instability that should be considered before its treatment;

• Thermal degradation of the PEG during the sawing step generate new elements;

• XRD and Raman spectroscopy confirm presence the silicon dioxide nanoparticles;

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Araibia, H., Boutouchent-Guerfi, N., Tazibet, S. et al. Identification of the Silica Nanoparticles Appeared in the Slurry Generated during the Sawing Step to Manufacture the Photovoltaic Cells. Silicon 13, 2763–2769 (2021). https://doi.org/10.1007/s12633-020-00622-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00622-y

Keywords

Navigation