Skip to main content

Advertisement

Log in

From Metallurgical-Grade to Solar-Grade Silicon: An Overview

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The non-renewable nature of fossil fuels as an energy source means its future availability is a cause for concern. The world’s energy demand is ever increasing and there is a growing interest in finding alternative renewable, environmentally benign and cheap energy sources like solar energy. This has resulted in the shortage of silicon feedstock for the photovoltaic industry. This is mainly due to the non-availability of a dedicated solar silicon production and the growing demand for silicon feedstock. There has been tremendous research in a quest to develop methods for the production of solar-grade silicon in a cheap and environmentally friendly way. The metallurgical and chemical routes for the production of solar-grade silicon from metallurgical-grade silicon have evolved. The chemical methods are the most researched ones and they are mostly preferred than the metallurgical ones since the former are capable of producing silicon of higher purity. This review discusses some of the available methods so far for the production of solar-grade silicon using metallurgical-grade silicon as a starting material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liang Y, Sun W, Zhu Y, Christie P (2007) Mechanisms of silicon-mediated alleviation of abiotic stresses in higher plants: A review. Environ Pollut 147:422–428

    Article  CAS  Google Scholar 

  2. Oishi T, Watanabe M, Koyama K, Tanaka M, Saegusa K (2011) Process for solar- grade silicon production by molten salt electrolysis using aluminum-silicon liquid alloy. J Electrochem Soc 158:E93–E99

    Article  CAS  Google Scholar 

  3. Filtvedt WO, Javidi M, Holt A, Melaaen MC, Marstein E, Tathgar H, Ramachandran PA (2010) Development of fluidized bed reactors for silicon production. Sol Energy Mater Sol Cells 94:1980–1995

    Article  CAS  Google Scholar 

  4. Luque A, Hegedus S (2003) Handbook of photovoltaic science and engineering. Wiley, New York

    Book  Google Scholar 

  5. Wang HY, Tan Y, Li JY, Li YQ, Dong W (2012) Removal of silicon carbide from kerf loss slurry by Al-Si alloying process. Sep Purif Technol 89:91–93

    Article  CAS  Google Scholar 

  6. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei P. (2008) New processes for the production of solar-grade polycrystalline silicon: A review. Sol Energy Mater Sol Cells 92: 418–424

    Article  CAS  Google Scholar 

  7. Pichel WJ, Yang MR (2005) Solar powered: An emerging growth industry facing severe supply constraints. Piper Jaffray Equity Research, New York

    Google Scholar 

  8. Abba IA, Grace JR, Bi H, Thompson ML (2003) Spanning the flow regimes: generic fluidized bed reactor model. AIChE J 49:1838–1848

    Article  CAS  Google Scholar 

  9. Safarian J, Tranell G, Tangstad M (2012) Processes for upgrading metallurgical-grade silicon to solar-grade silicon. Energy Procedia 20:88–89

    Article  CAS  Google Scholar 

  10. Degoulange J, Perichaud I, Trassy C (2008) Multicrystalline silicon wafers prepared from upgraded metallurgical feedstock. Sol Energy Mater Sol Cells 92:1269–1273

    Article  CAS  Google Scholar 

  11. Koch W, Endrös AL, Franke D, Haßler C, Kalejs JP, Müller HJ (2003) Bulk crystal growth and wafering for PV. In: Luque A, Hegedus S (eds) Handbook of Photovoltaic Science and Engineering. Wiley

  12. Ceccaroli B, Lohne O (2003) Solar-grade silicon feedstock Handbook of photovoltaic science and engineering. Wiley, New Jersey

    Google Scholar 

  13. O’Mara WC, Herring RB, Hunt LP (1990) Silicon precursors: Their manufacture and properties Handbook of semiconductor silicon technology. Noyes, New Jersey

    Google Scholar 

  14. Markvart T (2000) Solar electricity. Wiley, Chichester

    Google Scholar 

  15. Yamada Y, Harada K (1993) Process for producing trialkoxysilane. US Patent 5260471

  16. Lewis KM, Mereigh AT, O’Young C, Cameron RA (2010) Process for direct synthesis of trialkoxysilane. US Patent 7652164

  17. Anderson AR, Meyer JG (2004) Process for the manufacture of alkoxysilanes and alkoxy orthosilicates. US Patent 6680399

  18. Saga T (2010) Advances in crystalline silicon solar cell technology for industrial mass production. NPG Asia Mater 2:96–120

    Article  Google Scholar 

  19. Schmela M, Masson G, Mai NNT (2016) Global market outlook for solar power 2016-2020. European Photovoltaic Industry Association, Brussels

    Google Scholar 

  20. Masson G, Orlandi S, Relinger M (2016) Global market outlook for photovoltaics 2015-2018. European photovoltaic industry association, Brussels

    Google Scholar 

  21. Koch EC (2007) Special materials in pyrotechnics: VI. Silicon- an old fuel with new perspectives. Propellants Explos Pyrotech 32:205–212

    Article  CAS  Google Scholar 

  22. Amendola S (2011) Overview of manufacturing processes for solar-grade silicon, Easton. https://www.yumpu.com

  23. Luo D, Liu N, Lu Y, Zhang G, Li T (2011) Removal of boron from metallurgical-grade silicon by electromagnetic induction slag melting. Trans Nonferrous Met Soc China 21:1178–1184

    Article  CAS  Google Scholar 

  24. Johnston MD, Barati M (2010) Distribution of impurity elements in slag-silicon equilibria for oxidative refining of metallurgical silicon for solar cell applications. Sol Energy Mater Sol Cells 94:2085–2090

    Article  CAS  Google Scholar 

  25. Yuge N, Abe M, Hanazawa K, Baba H, Nakamura N, Kato Y, Sakaguchi Y, Hiwasa S, Aratani F (2001) Purification of metallurgical-grade silicon up to solar-grade. Prog Photovolt Res Appl 9:203–209

    Article  CAS  Google Scholar 

  26. Zheng S, Engh TA, Tangstad M, Luo X (2011) Separation of phosphorus from silicon by induction vacuum refining. Sep Purif Technol 82:128–137

    Article  CAS  Google Scholar 

  27. Khattak CP, Joyce DB, Schmid F (2001) Production of solar-grade silicon by refining liquid metallurgical-grade silicon. National Renewable Energy Laboratory, Colorado

    Google Scholar 

  28. Mei P, Moreira SP, Cardoso E, Côrtes A D S, Marques FC (2012) Purification of metallurgical silicon by horizontal zone melting. Sol Energy Mater Sol Cells 98:233–239

    Article  CAS  Google Scholar 

  29. Pires KCS, Otubo J, Braga AFB, Mei P (2005) The purification of metallurgical-grade silicon by electron beam melting. J Mater Process Technol 169:16–20

    Article  CAS  Google Scholar 

  30. Santos IC, Gonçalves A P, Santos CS, Almeida M, Afonso MH, Cruz MJ (1990) Purification of metallurgical-grade silicon by acid leaching. Hydrometallurgy 23:237–246

    Article  CAS  Google Scholar 

  31. Soiland AK (2004) Silicon for solar cells. Thesis. Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  32. Yoshikawa T, Arimura K, Morita K (2005) Boron removal in the solidification refining of Si with Si-Al melt. Metall Mater Trans B 36:842–847

    Google Scholar 

  33. Kvande R (2008) Incorporation of impurities during directional solidification of multicrystalline silicon for solar cells. Thesis. Norwegian University of Science and Technology, Trondheim

    Google Scholar 

  34. Martorano MA, Neto JBF, Oliveira TS, Tsubaki TO (2011) Refining of metallurgical silicon by directional solidification. Mater Sci Eng B 176:217–226

    Article  CAS  Google Scholar 

  35. Tao M (2013) Impurity segregation in electrochemical processes and its application to electrorefining of ultrapure silicon. Electrochim Acta 89:688–691

    Article  CAS  Google Scholar 

  36. Olsen E, Rolseth S (2010) Three-layer electrorefining of silicon. Metall Mater Trans B 41:295–302

    Article  Google Scholar 

  37. Pizzini S (2010) Towards solar-grade silicon: Challenges and benefits for low cost photovoltaics. Sol Energy Mater Sol Cells 94:1528–1533

    Article  CAS  Google Scholar 

  38. Queisser HJ (2009) Detailed balance limit for solar cell efficiency. Mater Sci Eng B 159-160:322–328

    Article  CAS  Google Scholar 

  39. Meteleva-Fischer YV, Yang Y, Boom R, Kraaijveld B, Kuntzel H (2012) Slag treatment followed by acid leaching as a route to solar-grade silicon. JOM 64:957–967

    Article  CAS  Google Scholar 

  40. Johnston MD, Khajavi MT, Li M, Sokhanvaran S, Barati M (2012) High-temperature refining of metallurgical-grade silicon: A review. JOM 64:935–945

    Article  CAS  Google Scholar 

  41. Khalifa M, Atyaoui M, Hajji M, Ouertani R, Ezzaouia H (2013) Purification of metallurgical-grade silicon powder via chemical attack by hydrofluoric and nitric acids followed by thermal treatment. Mater Sci Semicond Process 16:1742– 1746

    Article  CAS  Google Scholar 

  42. Lai H, Huang L, Gan C, Xing P, Li J, Luo X (2016) Enhanced acid leaching of metallurgical-grade silicon in hydrofluoric acid containing hydrogen peroxide as oxidizing agent. Hydrometallurgy 164:103–110

    Article  CAS  Google Scholar 

  43. Huang L, Lai H, Gan C, Xiong H, Xing P, Luo X (2016) Separation of boron and phosphorus from Cu-alloyed metallurgical-grade silicon by CaO-SiO 2-CaCl 2 slag treatment. Sep Purif Technol 170:408–416

    Article  CAS  Google Scholar 

  44. Lai H, Huang L, Lu C, Fang M, Ma W, Xing P, Li J, Luo X (2015) Leaching behaviour of impurities in Ca-alloyed metallurgical-grade silicon. Hydrometallurgy 156:173–181

    Article  CAS  Google Scholar 

  45. Rogers LC (1990) Polysilicon Preparation. Handbook of Semiconductor Silicon Technology, Noyes

  46. Ma X, Zhang J, Wang T, Li T (2009) Hydrometallurgical purification of metallurgical-grade silicon. Rare Met 28:221–225

    Article  CAS  Google Scholar 

  47. Li Y, Chen J, Dai S (2016) Effect of iron addition (upto 10000 ppmw) on silicon purification during Al-Si solvent refining. J Cryst Growth 453:49–53

    Article  CAS  Google Scholar 

  48. Huang L, Lai H, Lu C, Gan C, Fang M, Xing P, Li J, Luo X (2016) Segregation behaviour of iron in metallurgical-grade silicon during Si-Cu solvent refining. Vacuum 129:38–44

    Article  CAS  Google Scholar 

  49. Khajavi LT, Barati M (2016) Thermodynamics of phosphorus in solvent refining of silicon using ferrosilicon alloys. Metallurgy Materials Transition B (Online doi:10.1007/s11663-016-0804-9)

  50. Li J, Ban B, Li Y, Bai X, Zhang T, Chen J (2017) Removal of impurities from metallurgical-grade silicon during Ga-Si solvent refining. Silicon 9:77–83

    Article  CAS  Google Scholar 

  51. Li M, Utigard T, Barati M (2014) Removal of boron and phosphorus from silicon using CaO-SiO 2-Na 2O-Al 2 O 2 flux. Metall Mater Trans B 45B:221–228

    Article  Google Scholar 

  52. Lei Y, Ma W, Sun L, Wu J, Dai Y, Morita K (2016) Removal of B from Si by HF addition during Al-Si solvent refining process. Sci Technol Adv Mat 17:12–19

    Article  CAS  Google Scholar 

  53. Siffert P, Krimmel E (2004) Silicon: Evolution and future of a technology. Springer

  54. Boer KW (1992) Survey of semiconductor physics Volume II: Barriers, junctions, surfaces and devices. Springer

  55. Luque A, Hegedus S (2011) Handbook of photovoltaic science and engineering. Wiley

  56. Strebkov DS, Pinov A, Zadde VV, Lebedev EN, Belov EP, Efimov NK, Kleshevnkova SI (2004) Chlorine free technology for solar-grade silicon manufacturing 14th Workshop on crystalline silicon solar cells and modules. Winter Park, Colorado

  57. Zadde VV, Pinov AB, Strebkov DS (2002) New method of solar-grade silicon production 12th Workshop on crystalline silicon solar cell materials and processes. Breckenridge, Colorado

  58. Roston WA, Cody RD, Bowman MA (2009) Process for the production of alkoxysilanes. UK Patent 2456949

  59. Adonin NY, Prikhod’ko SA, Shabalin AY, Prosvirin IP, Zaikovskii VI, Kochubey DI, Zyuzin DA, Parmon VN, Monin EA, Bykova IA, Martynov PO, Rusakov SL, Storozhenko PA (2016) The direct synthesis of trialkoxysilanes: New data for understanding the processes of the copper-containing active sites formation during the activation of the initial silicon based contact mass. J Catal 338:143–153

    Article  CAS  Google Scholar 

  60. Cromer SR, Eng RN, Lewis KM, Mereigh AT, O’Young C, Hua Y u (2013) Nanosized copper catalyst precursors for the direct synthesis of trialkoxysilanes. US Patent 8513449

  61. Stanjek V, Imlinger N, Westermayer H, Wewers W (2015) Continuous process for preparing SiOC-containing compounds.US Patent 8933259

  62. Tsuo Y, Gee J, Menna P, Strebkov D, Pinov A, Zadde V (1998) Environmentally benign silicon solar cell manufacturing 2nd World Conference and Exhibition on Photovoltaic Solar Energy Conversion. Hofburg Kongresszentrum, Vienna

    Google Scholar 

  63. Lewis KM, Cameron RA, Ritscher JS (2008) Process for the direct synthesis of trialkoxysilane. US Patent 7429672

Download references

Acknowledgments

The author would like to acknowledge financial support from Nelson Mandela Metropolitan University and the National Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fidelis Chigondo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chigondo, F. From Metallurgical-Grade to Solar-Grade Silicon: An Overview. Silicon 10, 789–798 (2018). https://doi.org/10.1007/s12633-016-9532-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-016-9532-7

Keywords

Navigation