Skip to main content
Log in

Pathways to Solar Grade Silicon

  • Brief Communication
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The price of photovoltaics continues to fall and installed solar generation capacity doubles every two years. To be competitive with existing fossil generation prices, estimates dictate the solar module price needs to decrease by one half, to $0.50 per peak watt (Wp). The production of solar-grade silicon (SoG-Si) contributes the most to the cell cost. In this communication, we outline the current and future methods for SoG-Si production and use.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Zheng C, Kammen DM (2014) An innovation-focused roadmap for a sustainable global photovoltaic industry. Energy Policy 67:159–169

    Article  Google Scholar 

  2. Powell DM, Winkler MT, Choi HJ, Simmons CB, Needleman DB, Buonassisi T (2012) Crystalline silicon photovoltaics: A cost analysis framework for determining technology pathways to reach baseload electricity costs. Energy & Environmental Science 5:5874–5883

    Article  Google Scholar 

  3. Powell DM, Winkler MT, Goodrich A, Buonassisi T (2013) Modeling the cost and minimum sustainable price of crystalline silicon photovoltaic manufacturing in the united states. IEEE Journal of Photovoltaics 3:662–668

    Article  Google Scholar 

  4. Tyagi VV, Rahim NAA, Rahim NA, Selvaraj JAL (2013) Progress in solar pv technology: Research and achievement. Renew Sust Energ Rev 20:443–461

    Article  CAS  Google Scholar 

  5. Parida B, Iniyan S, Goic R (2011) A review of solar photovoltaic technologies. Renew Sust Energ Rev 15:1625–1636

    Article  CAS  Google Scholar 

  6. Ranjan S, Balaji S, Panella RA, Ydstie BE (2011) Silicon solar cell production. Comput Chem Eng 35:1439–1453

    Article  CAS  Google Scholar 

  7. Fabry L, Hesse K Crystalline silicon feedstock preparation and analysis. In: Willeke GP, Weber ER (eds) Advances in photovoltaics, vol 12012. p 1850–261

  8. Delannoy Y (2012) Purification of silicon for photovoltaic applications. J Cryst Growth 360:61–67

    Article  CAS  Google Scholar 

  9. Braga AFB, Moreira SP, Zampieri PR, Bacchin JMG, Mei PR (2008) New processes for the production of solar grade polycrystalline silicon: A review. Sol Energy Mater Sol Cells 92:418–424

    Article  CAS  Google Scholar 

  10. Jiao Y, Salce A, Ben W, Jiang F, Ji X, Morey E, Lynch D (2011) Siemens and Siemens-like processes for producing photovoltaics: Energy payback time and lifetime carbon emissions. JOM 63:28–31

    Article  CAS  Google Scholar 

  11. Bischoff F (1964) inventor; Siemens, assignee. Method for producing pure silicon. US patent 3, 146,123

  12. del Coso G, del Canizo C, Luque A (2008) Chemical vapor deposition model of polysilicon in a trichlorosilane and hydrogen system. J Electrochem Soc 155:D485–D491

    Article  Google Scholar 

  13. Anbarasan PM, Senthilkumar P, Manimegalai S, Geetha M, Vasudevan K, Ravi V, Deivasagayam D, Babu SM, Aroulmoji V (2010) Spectral and morphological studies of nanocrystalline silicon thin films synthesized by pecvd for solar cells. Silicon 2:7–17

    Article  CAS  Google Scholar 

  14. Endoh T, Tebakari M, Ishii T, Sakaguchi M (2014) inventors; Mitsubishi, assignee. Polycrystalline silicon reactor US patent 8,703,248

  15. Keck DW, Russell RO, Dawson HJ (2003) inventors; Advanced Silicon Materials, assignee. Chemical vapor deposition system for polycrystalline silicon rod production US patent 6,221,155

  16. Ramos A, del Canizo C, Valdehita J, Zamorano JC, Luque A (2013) Radiation heat savings in polysilicon production: Validation of results through a cvd laboratory prototype. J Cryst Growth 374:5–10

    Article  CAS  Google Scholar 

  17. Yaws CL, Jelen FC, Li K-Y, Patel PM, Fang CS (1979) New technologies for solar energy silicon: Cost analysis of ucc silane process. Sol. Energy 22:547–553

    Article  Google Scholar 

  18. Filtvedt WO, Holt A, Ramachandran PA, Melaaen MC (2012) Chemical vapor deposition of silicon from silane: Review of growth mechanisms and modeling/scaleup of fluidized bed reactors. Sol Energy Mater. Sol Cells 107:188–200

    Article  CAS  Google Scholar 

  19. Wang C, Wang T, Wang Z (2012) Manufacture of granular polysilicon from trichlorosilane in a fluidized-bed reactor. Chem Eng Technol 35:893–898

    Article  Google Scholar 

  20. Filtvedt WO, Javidi M, Holt A, Melaaen MC, Marstein E, Tathgar H, Ramachandran PA (2010) Development of fluidized bed reactors for silicon production. Sol Energy Mater Sol Cells 94:1980–1995

    Article  CAS  Google Scholar 

  21. Wang C, Wang T, Li P, Wang Z (2013) Recycling of SiCl4 in the manufacture of granular polysilicon in a fluidized bed reactor. Chem Eng J 220:81–88

    Article  CAS  Google Scholar 

  22. Gu J, Fahrenkrug E, Maldonado S (2013) Direct electrodeposition of crystalline silicon at low temperatures. J Am Chem Soc 135:1684–1687

    Article  CAS  Google Scholar 

  23. Martorano MA, Neto JB, Oliveira TS, Tsubaki TO (2011) Refining of metallurgical silicon by directional solidification. Mater Sci Eng: B 176:217–226

    Article  CAS  Google Scholar 

  24. Li J-w, Guo Z-c, Li J-c, Yu L-z (2014) Super gravity separation of purified Si from solvent refining with the Al-Si alloy system for solar grade silicon. Silicon 7:xxx–xxx. doi:10.1007/s12633-014-9197-z

  25. Lee J-K, Lee J-S, Jang B-Y, Kim J-S, Ahn Y-S, Cho C-H (2013) Directional solidification behaviors of polycrystalline silicon by electron-beam melting. Jpn J Appl Phys 52:10MB09

  26. Safarian J, Tangstad M (2012) Vacuum refining of molten silicon. Metallurgical and Materials Transactions B-Process Metallurgy and Materials Processing Science 43:1427–1445

    Article  CAS  Google Scholar 

  27. Nohira T (2014) Silicon production by molten salt electrolysis. Encyclopedia of Applied Electrochemistry 457:1963–1966

  28. Yasuda K, Nohira T, Kobayashi K, Kani N, Tsuda T, Hagiwara R (2013) Improving purity and process volume during direct electrolytic reduction of solid SiO2 in molten CaCl2 for the production of solar-grade silicon. Energy Technology 1:245–252

    Article  CAS  Google Scholar 

  29. Davis JR, Rohatgi A, Hopkins RH, Blais PD, Rai-Choudhury P, McCormick JR, Mollenkopf HC (1980) Impurities in silicon solar cells. Electron Devices. IEEE Trans 27:677–687

    Article  Google Scholar 

  30. Fisher G, Seacrist MR, Standley RW (2012) Silicon crystal growth and wafer technologies. Proc IEEE 100:1454–1474

    Article  CAS  Google Scholar 

  31. Pizzini S (2010) Towards solar grade silicon: Challenges and benefits for low cost photovoltaics. Sol Energy Mater Sol Cells 94:1528–1533

    Article  CAS  Google Scholar 

  32. Coletti G, Bronsveld PCP, Hahn G, Warta W, Macdonald D, Ceccaroli B, Wambach K, Le Quang N, Fernandez JM (2011) Impact of metal contamination in silicon solar cells. Adv Funct Mater 21:879–890

    Article  CAS  Google Scholar 

  33. Buonassisi T, Istratov AA, Marcus MA, Lai B, Cai Z, Heald SM, Weber ER (2005) Engineering metal-impurity nanodefects for low-cost solar cells. Nat Mater 4:676–679

    Article  CAS  Google Scholar 

  34. Coletti G (2013) Sensitivity of state-of-the-art and high efficiency crystalline silicon solar cells to metal impurities. Prog Photovolt 21:1163–1170

    CAS  Google Scholar 

  35. Kwapil W, Schoen J, Schindler F, Warta W, Schubert MC (2014) Impact of iron precipitates on carrier lifetime in as-grown and phosphorus-gettered multicrystalline silicon wafers in model and experiment. IEEE Journal of Photovoltaics 4:791–798

    Article  Google Scholar 

  36. Goodrich A, Hacke P, Wang Q, Sopori B, Margolis R, James TL, Woodhouse M (2013) A wafer-based monocrystalline silicon photovoltaics road map: Utilizing known technology improvement opportunities for further reductions in manufacturing costs. Sol Energy Mater Sol Cells 114:110–135

    Article  CAS  Google Scholar 

  37. Atwater HA, Polman A (2010) Plasmonics for improved photovoltaic devices. Nat Mater 9:205–213

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ross Needham Andrews or Stephen John Clarson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrews, R.N., Clarson, S.J. Pathways to Solar Grade Silicon. Silicon 7, 303–305 (2015). https://doi.org/10.1007/s12633-014-9235-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-014-9235-x

Keywords

Navigation