Skip to main content

Advertisement

Log in

Improvement in Fresh, Mechanical and Microstructural Properties of Fly Ash- Blast Furnace Slag Based Geopolymer Concrete By Addition of Nano and Micro Silica

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this study, the effect of nano-silica (NS) and silica fume (SF) on workability, setting time, compressive strength and microstructural properties of fly ash-ground granulated blast furnace slag (FA-GGBFS) based geopolymer concrete (GPC) is investigated. Five mixtures of each containing 0.5%, 1.0%, 1.5%, 2.0% and 2.5% NS and SF are prepared for this investigation. The optimum GPC mixture with NS resulted in compressive strength of 63 MPa and the SF modified GPC achieved a compressive strength of 59.59 MPa after 28 days of outdoor temperature curing (Avg. temp. 31.4℃). The hardened concrete samples are analyzed through X-ray diffraction (XRD), X-ray fluorescence (XRF), field emission scanning electron microscope (FESEM), Fourier transform infrared spectroscopy (FTIR), and petrographic examination, for the better understanding of geopolymer mineralogy, mechanism and microstructure. Results indicate that both NS and SF facilitated a higher degree of geopolymerization, leading to the densification of the geopolymer matrix which led to the improvement of the properties of FA-GGBFS based GPC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mishra J, Das SK (2019) S. M. Mustakim. Geopolymer Technology for the Promotion of Sustainable Built Environment in Future India. Adv Civ Eng 3:45–68

  2. Chindaprasirt P, Chareerat T, Sirivivatnanon V (2007) Workability and strength of coarse high calcium fly ash geopolymer. Cem Concr Compos 29:224–229

    Article  CAS  Google Scholar 

  3. Hardjito D, Wallah SE, Sumajouw DMJ, Rangan BV (2004) On the development of fly ash based geopolymer concrete. ACI Mater J 101:467–472

    CAS  Google Scholar 

  4. Olivia M, Nikraz H (2012) Properties of fly ash geopolymer concrete designed by Taguchi method. Mater Des 36:191–198

    Article  CAS  Google Scholar 

  5. Li Z Z & Liu S (2007) Influence of slag as additive on compressive strength of fly-ash-based geopolymer. J Mater Civ Eng 19:470–474

  6. Kalaivani M, Shyamala G, Ramesh S, Angusenthil K, Jagadeesan R (2020) Performance evaluation of fly ash/slag based geopolymer concrete beams with addition of lime. Materials Today: Proceedings

  7. Nath P, Sarker PK (2016) Flexural strength and elastic modulus of ambient-cured blended low-calcium fly ash geopolymer concrete. Constr Build Mater 130:22–31

    Article  CAS  Google Scholar 

  8. Nath SK, Kumar S (2013) Influence of iron making slags on strength and microstructure of fly ash geopolymer. Constr Build Mater 38:924–930

    Article  CAS  Google Scholar 

  9. Rafeet A, Vinai R, Soutsos M, Sha W (2017) Guidelines for mix proportioning of fly ash/GGBS based alkali activated concretes. Constr Build Mater 147:130–142

    Article  CAS  Google Scholar 

  10. Nath P, Kumar P (2017) Fracture properties of GGBFS-blended fly ash geopolymer concrete cured in ambient temperature. Mater Struct 50:1–12

    Article  CAS  Google Scholar 

  11. Deb PS, Nath P, Sarker PK (2014) The effects of ground granulated blast-furnace slag blending with fly ash and activator content on the workability and strength properties of geopolymer concrete cured at ambient temperature. Mater Des 62:32–39

    Article  CAS  Google Scholar 

  12. Prakasam G, Murthy AR, Reheman MS (2018) Mechanical, durability and fracture properties of Nano-modified FA/GGBS geopolymer mortar. Mag Concr Res 72:207–216

    Article  Google Scholar 

  13. Das SK, Singh SK, Mishra. J, Mustakim SM (2020) Effect of Rice Husk Ash and Silica Fume as Strength-Enhancing Materials on Properties of Modern Concrete—A Comprehensive Review. In: Emerging Trends in Civil Engineering. Lecture Notes in Civil Engineering 61:253–266

    Article  Google Scholar 

  14. Jithendra C, Elavenil S (2019) Effects of Silica Fume on Workability and Compressive Strength Properties of Aluminosilicate Based Flowable Geopolymer Mortar under Ambient Curing. Silicon

  15. Dybeł P, Furtak K (2017) Influence of silica fume content on the quality of bond conditions in high-performance concrete specimens. Arch Civ Mech Eng 17:795–805

    Article  Google Scholar 

  16. Thokchom S, Dutta D D & Ghosh S (2011) Effect of Incorporating Silica Fume in Fly Ash Geopolymers. World Acad Sci Eng Technol 60:243–247

  17. Okoye FN, Prakash S, Singh NB (2017) Durability of fly ash based geopolymer concrete in the presence of silica fume. J Clean Prod 149:1062–1067

    Article  CAS  Google Scholar 

  18. Cheah CB, Tan LE, Ramli M (2019) The engineering properties and microstructure of sodium carbonate activated fly ash/ slag blended mortars with silica fume. Compos Part B 160:558–572

    Article  CAS  Google Scholar 

  19. Duan P, Yan C, Zhou W (2017) Compressive strength and microstructure of fly ash based geopolymer blended with silica fume under thermal cycle. Cem Concr Compos 78:108–119

    Article  CAS  Google Scholar 

  20. Shekari K, Razzaghi MS (2011) Influence of nano particles on durability and mechanical properties of high-performance concrete. Procedia Eng 14:3036–3043

    Article  CAS  Google Scholar 

  21. Adak D, Sarkar M, Mandal S (2017) Structural performance of Nano-silica modified fly-ash based geopolymer concrete. Constr Build Mater 135:430–439

    Article  CAS  Google Scholar 

  22. Riahi S, Nazari A (2012) The effects of nanoparticles on early age compressive strength of ash-based geopolymers. Ceram Int 38:4467–4476

    Article  CAS  Google Scholar 

  23. Deb PS, Sarker PK, Barbhuiya S (2015) Effects of nano-silica on the strength development of geopolymer cured at room temperature. Constr Build Mater 101:675–683

    Article  Google Scholar 

  24. Criado M, Fernández-Jiménez A, de la Torre AG, Aranda MAG, Palomo A (2007) An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem Concr Res 37:671–679

    Article  CAS  Google Scholar 

  25. Fernández-Jiménez A, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: Effect of the activator. Cem Concr Res 35:1984–1992

    Article  CAS  Google Scholar 

  26. Fernández-Jiménez A, Palomo A (2003) Characterisation of fly ashes. Potential reactivity as alkaline cements. Fuel 82:2259–2265

    Article  CAS  Google Scholar 

  27. ASTM International (2019) ASTM C618-19, Standard Specification for Coal Fly Ash and Raw or Calcined Natural Pozzolan for Use in Concrete, West Conshohocken

  28. Bureau of Indian Standards (BIS) (2016) IS 383, Coarse and Fine Aggregate for Concrete - Specification. Manak Bhavan, Bahadur Shah Zafar Marc.3, New Delhi

  29. Bureau of Indian Standards (BIS) (1959) IS 1199, Methods of sampling and analysis of concrete. Manak Bhavan, Bahadur Shah Zafar Marc.3, New Delhi

  30. Bureau of Indian Standards (BIS) (1982) IS 10086, Specification for moulds for use in tests of cement and concrete. Manak Bhavan, Bahadur Shah Zafar Marc.3, New Delhi

  31. Bureau of Indian Standards (BIS) (1959) IS 516, Method of Tests for Strength of Concrete. Manak Bhavan, Bahadur Shah Zafar Marc.3, New Delhi

  32. Bureau of Indian Standards (BIS) (1988) IS 4031 (part-5), Method of Physical Test for Hydraulic Cement. Manak Bhavan, Bahadur Shah Zafar Marc.3, New Delhi

  33. Gao X, Yu QL, Brouwers HJH (2015) Characterization of alkali activated slag-fly ash blends containing nano-silica. Constr Build Mater 98:397–406

    Article  Google Scholar 

  34. Jalal M, Mansouri E, Sharifipour M, Pouladkhan AR (2012) Mechanical, Rheological, Durability and Microstructural Properties of High Performance Self-Compacting Concrete Containing SiO2 Micro and Nanoparticles. Mater Des 34:389–400

    Article  CAS  Google Scholar 

  35. Khan MZN, Shaikh FUA, Hao Y, Hao H (2016) Synthesis of high strength ambient cured geopolymer composite by using low calcium fly ash. Constr Build Mater 125:809–820

    Article  CAS  Google Scholar 

  36. Buchwald A, Hilbig H, Kaps C (2007) Alkali-activated metakaolin slag blends - performance and structure in dependence of their composition. J Mater Sci 42:3024–3032

    Article  CAS  Google Scholar 

  37. Jena S, Panigrahi SR, Sahu P (2019) Effect of Silica Fume on the Properties of Fly Ash Geopolymer Concrete. In: Sustainable Construction and Building Materials. Lect Notes Civ Eng 25:145–153

    Article  Google Scholar 

  38. Jena S, Panigrahi R, Sahu P (2019) Mechanical and Durability Properties of Fly Ash Geopolymer Concrete with Silica Fume. J Inst Eng India Ser A 100:697–705

    Article  CAS  Google Scholar 

  39. Chindaprasirt P, De Silva P, Sagoe-Crensti K, Hanjitsuwan S (2012) Effect of SiO2 and Al2O3 on the setting and hardening of high calcium fly ash-based geopolymer systems. J Mater Sci 47:4876–4883

    Article  CAS  Google Scholar 

  40. Sukontasukkul P, Chindaprasirt P, Pongsopha P, Phoo-Ngernkham T, Tangchirapat W, Banthia N (2020) Effect of fly ash/silica fume ratio and curing condition on mechanical properties of fiber-reinforced geopolymer. J Sust Cem -Based Mater

  41. Fernandez JA, Palomo A (2005) Composition and microstructure of alkali activated fly ash binder: effect of the activator. Cem Concr Res 35:1984–1992

    Article  CAS  Google Scholar 

  42. Xu H, Deventer JSJ (2003) Effect of source materials on geopolymerization. Ind Eng Chem Res 42:1698–1706

    Article  CAS  Google Scholar 

  43. Xu H, Deventer JSJ (2000) The geo-polymerisation of alumino-silicate minerals. Int J Miner Process 59:247–266

    Article  CAS  Google Scholar 

  44. Criado M, Fernandez JA, Torre AG, Aranda MAG, Palomo A (2007) An XRD study of effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem Concr Res 37:671–679

    Article  CAS  Google Scholar 

  45. Adak D, Sarkar M, Mandal S (2014) Effect of nano-silica on strength and durability of fly ash based geopolymer mortar. Constr Build Mate 70:453–459

    Article  Google Scholar 

  46. Hisham M, Khater. Effect of nano-silica on microstructure formation of low-cost geopolymer binder. Nanocomposites, 2(216) 84–97

  47. Fernandez-Jimenez A, García-Lodeiro I, Palomo A (2007) Durability of alkali-activated fly ash cementitious materials. J Mater Sci 42:3055–3065

    Article  CAS  Google Scholar 

  48. Sarker PK (2009) Analysis of geopolymer concrete columns. Mater Struct 42:715–724

    Article  CAS  Google Scholar 

  49. Sarker PK (2011) Bond strength of reinforcing steel embedded in geopolymer concrete. Mater Struct 44:1021–1030

    Article  CAS  Google Scholar 

  50. Sarker PK, Haque R, Ramgolam KV (2013) Fracture behaviour of heat cured fly ash based geopolymer concrete. Mater Des 44:580–586

    Article  CAS  Google Scholar 

  51. Das SK, Mishra J, Singh SK, Mustakim SM, Patel A, Das SK, Behera U (2020) Characterization and utilization of rice husk ash (RHA) in fly ash – Blast furnace slag based geopolymer concrete for sustainable future. Materials Today: Proceedings

  52. Nath P, Sarker PK (2014) Effect of GGBFS on setting, workability and early strength properties of fly ash geopolymer concrete cured in ambient condition. Constr Build Mater 66:163–171

  53. Das SK, Mishra J, Mustakim SM (2018) Rice Husk Ash as a Potential Source Material for Geopolymer Concrete: A. Int J Appl Eng Res 13:81–84

    Google Scholar 

  54. Mishra J, Das SK, Krishna RS, Nanda B, Patro SK, Mustakim SM (2020) Synthesis and characterization of a new class of geopolymer binder utilizing ferrochrome ash (FCA) for sustainable industrial waste management. Materials Today: Proceedings

  55. Al-Bakria AM, Kamarudin H, BinHussain M, Nizar IK, Zarina Y, Rafiza AR (2011) The effect of curing temperature on physical and chemical properties of geopolymers. Phys Procedia 22:286–291

    Article  CAS  Google Scholar 

  56. Mo BH, Zhu H, Cui XM, He Y, Gong SY (2014) Effect of curing temperature on geopolymerization of metakaolin-based geopolymers. Appl Clay Sci 99:144–148

    Article  CAS  Google Scholar 

  57. Davidovits J, Davidovits R (2020) Ferro-sialate geopolymers, Technical papers # 27, Geopolymer Inst Lib

  58. Nath SK, Kumar S (2017) Reaction kinetics, microstructure and strength behavior of alkali activated silico-manganese (SiMn) slag – Fly ash blends. Constr Build Mater 147:371–379

    Article  CAS  Google Scholar 

  59. Perná I, Hanzlíček T, Šupová M (2014) The identification of geopolymer affinity in specific cases of clay materials. Appl Clay Sci 102:213–219

    Article  CAS  Google Scholar 

  60. Assaedi H, Shaikh FUA, Low IM (2015) Effect of nano-clay on mechanical and thermal properties of geopolymer. J Asian Ceam Soc 4:19–28

    Article  Google Scholar 

  61. Fine G, Stolper E (1986) Dissolved carbon dioxide in basaltic glasses: concentrations and speciation. Earth Planet Sci Lett 76:263–278

    Article  CAS  Google Scholar 

  62. Djobo JNY, Tchakouté HK, Ranjbar N, Elimbi A, Tchadjié LN, Njopwouo D (2016) Gel Composition and Strength Properties of Alkali-Activated Oyster Shell‐Volcanic Ash: Effect of Synthesis Conditions. J Am Ceram Soc 99:3159–3166

    Article  CAS  Google Scholar 

  63. Kaze CR, Djobo JNY, Nana A, Tchakoute HK, Kamseu E, Melo UC, Leonelli C, Rahier H (2018) Effect of silicate modulus on the setting, mechanical strength and microstructure of iron-rich aluminosilicate (laterite) based-geopolymer cured at room temperature. Ceram Int 44:21442–21450

    Article  CAS  Google Scholar 

  64. Rees CA, Provis JL, Lukey GC, van Deventer JS (2007) Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23:8170–8179

    Article  CAS  PubMed  Google Scholar 

  65. Yip CK, Lukey GC, van Deventer JS (2005) The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem Concr Res 35:1688–1697

    Article  CAS  Google Scholar 

  66. Kaze RC, Moungam LMB, Cannio M, Rosa R, Kamseu E, Melo UC, Leonelli C (2018) Microstructure and engineering properties of Fe2O3 (FeO)-Al2O3-SiO2 based geopolymer composites. J Clean Prod 199:849–859

  67. Yunsheng Z, Wei S, Zongjin L (2010) Composition design and microstructural characterization of calcined kaolin-based geopolymer cement. Appl Clay Sci 47:271–275

    Article  CAS  Google Scholar 

  68. Hsu JP, Nacu A (2005) Preparation of submicron-sized Mg (OH)2 particles through precipitation. Colloids Surf A 262:220–231

    Article  CAS  Google Scholar 

  69. Quercia G, Spiesz P, Hüsken G, Brouwers J (2012) Effects of amorphous nano-silica additions on mechanical and durability performance of SCC mixtures. In Proceedings of the International Congress on Durability of Concrete (ICDC 2012), pp 18–21

  70. Zhang MH, Islam J (2012) Use of nano-silica to reduce setting time and increase early strength of concretes with high volumes of fly ash or slag. Constr Build Mater 29:573–580

    Article  Google Scholar 

  71. He J, Jie Y, Zhang J, Yu Y, Zhang G (2013) Synthesis and characterization of red mud and rice husk ash-based geopolymer composites. Cem Concr Compos 37:108–118

    Article  CAS  Google Scholar 

  72. Bernal SA, Provis JL, Walkley B et al (2013) Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res 53:127–144

    Article  CAS  Google Scholar 

  73. Shi XS, Collins FG, Zhao XL, Wang QY (2012) Mechanical properties and microstructure analysis of fly ash geopolymeric recycled concrete. J Hazard Mater 237–238:20–29

Download references

Acknowledgements

The authors duly acknowledge the contributions of all project staffs of CSIR-IMMT, Bhubaneswar, India in carrying out the experiments. The support of Green Tech Concrete and Research, Bhubaneswar, India regarding this research is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Suliman Assaedi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mustakim, S.M., Das, S.K., Mishra, J. et al. Improvement in Fresh, Mechanical and Microstructural Properties of Fly Ash- Blast Furnace Slag Based Geopolymer Concrete By Addition of Nano and Micro Silica. Silicon 13, 2415–2428 (2021). https://doi.org/10.1007/s12633-020-00593-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00593-0

Keywords

Navigation