Skip to main content
Log in

Design and Sensitivity Analysis of Steep-Slope Bi-Channel Vertical Tunnel Field Effect Transistor

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

In this paper, the electrical characteristics of a low power steep-slope vertical tunnel field effect transistor (VTFET) is introduced with dual lateral channel in the source sidewall, which can considerably improve the device performance in comparison with the planar tunnel field effect transistor (TFET). The results demonstrate that unlike the conventional TFET with limited tunneling junction at the source/channel interface, the band to band tunneling area in VTFET is created along the entire length of the source region from the both sides, which amplifies the tunneling rate. The results demonstrate that on/off current ratio of 8.36e+7 and subthreshold swing (SS) of 10 mV/dec has been achieved for the VTFET in comparison with the on/off current ratio of 9.79e+5 and SS = 31 mV/dec for the planar TFET, respectively. Sensitivity analysis is conducted via calculating the standard deviation and mean value of main electrical measures as a function of various design parameters. It is indicated that gate workfunction and source doping density are critical design parameters that may fundamentally affect the efficiency of the device. An important feature of the proposed device is the insensitivity of the off-state current and subthreshold swing to the channel length scaling and drain bias, which exhibits VTFET promising potential for future low-power circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mukhopadhyay A, Maiti TK, Bhattacharya S, Iizuka T, Kikuchihara H, Miura-Mattausch M et al (2019) Prevention of highly power-efficient circuits due to short-channel effects in MOSFETs. IEICE. Trans. Electron. 102(6):487–494

    Article  Google Scholar 

  2. Pourghaderi MA, Pham AT, Ilatikhameneh H, Kim J, Park HH, Jin S et al (2017) Universality of short-channel effects on ultrascaled MOSFET performance. IEEE. Electron. Device Lett. 39(2):168–171

    Article  Google Scholar 

  3. Ahangari Z (2018) Performance investigation of a semi-junctionless type II heterojunction tunnel field effect transistor in nanoscale regime. Micro Nano Lett. 13(8):1165–1169

    Article  CAS  Google Scholar 

  4. Bentrcia T, Djeffal F, Ferhati H, Dibi Z (2020) A comparative study on scaling capabilities of Si and SiGe nanoscale double gate tunneling FETs. Silicon 12(4):945–953

    Article  CAS  Google Scholar 

  5. Chandan BV, Nigam K, Sharma D, Tikkiwal VA (2019) A novel methodology to suppress ambipolarity and improve the electronic characteristics of polarity-based electrically doped tunnel FET. Appl. Phys. A 125(2):81

    Article  Google Scholar 

  6. Bagga N, Chauhan N, Gupta D, Dasgupta S (2019) A novel twofold tunnel FET with reduced miller capacitance: proposal and investigation. IEEE Trans. Electron Devices 66(7):3202–3208

    Article  CAS  Google Scholar 

  7. Lu SC, Mohamed M, Zhu W (2016) Novel vertical hetero-and homo-junction tunnel field-effect transistors based on multi-layer 2D crystals. 2D Mater. 3(1):011010

    Article  Google Scholar 

  8. Kim SW, Choi WY (2016) Hump effects of germanium/silicon heterojunction tunnel field-effect transistors. IEEE Trans. Electron Devices 63(6):2583–2588

    Article  CAS  Google Scholar 

  9. Zhu J, Zhao Y, Huang Q, Chen C, Wu C, Jia R, Huang R (2017) Design and simulation of a novel graded-channel heterojunction tunnel FET with high ${I} _ {\scriptscriptstyle\text {ON}}/{I} _ {\scriptscriptstyle\text {OFF}} $ ratio and steep swing. IEEE Electron Device Lett. 38(9):1200–1203

    Article  CAS  Google Scholar 

  10. Hu VPH, Wang CT (2018) Optimization of III–V heterojunction tunnel FET with non-uniform channel thickness for performance enhancement and ambipolar leakage suppression. Japan. J. Appl. Phys. 57(4S):04FD18

    Article  Google Scholar 

  11. Sahu SA, Goswami R, Mohapatra SK (2020) Characteristic enhancement of hetero dielectric DG TFET using SiGe pocket at source/channel interface: proposal and investigation. Silicon 12(3):513–520

    Article  CAS  Google Scholar 

  12. Loan SA, Alharbi AG, Rafat M (2018) Ambipolar leakage suppression in electron–hole bilayer TFET: investigation and analysis. J. Comput. Electron. 17(3):977–985

    Article  Google Scholar 

  13. Alper C, Palestri P, Padilla JL, Ionescu AM (2016) The electron-hole bilayer TFET: dimensionality effects and optimization. IEEE Trans. Electron Devices 63(6):2603–2609

    Article  CAS  Google Scholar 

  14. Seo JH, Yoon YJ, Cho S, Kang IM, Lee JH (2019) Design optimization and analysis of InGaAs/InAs/InGaAs heterojunction-based electron hole bilayer tunneling FETs. J. Nanosci. Nanotechnol. 19(10):6070–6076

    Article  CAS  Google Scholar 

  15. Kim S, Choi WY, Park BG (2018) Vertical-structured electron-hole bilayer tunnel field-effect transistor for extremely low-power operation with high scalability. IEEE Trans. Electron Devices 65(5):2010–2015

    Article  CAS  Google Scholar 

  16. Fahad MS, Srivastava A, Sharma AK, Mayberry C, Mohsin KM (2016) Silicene nanoribbon tunnel field effect transistor. ECS Trans. 75(5):175

    Article  CAS  Google Scholar 

  17. Ni Z, Zhong H, Jiang X, Quhe R, Luo G, Wang Y, Ye M, Yang J, Shi J, Lu J (2014) Tunable band gap and doping type in silicene by surface adsorption: towards tunneling transistors. Nanoscale 6(13):7609–7618

    Article  CAS  Google Scholar 

  18. Samipour A, Dideban D, Heidari H (2019) First principles study of the ambipolarity in a germanene nanoribbon tunneling field effect transistor. ECS J. Solid State Sci. Technol. 8(12):M111–M117

    Article  CAS  Google Scholar 

  19. Tamersit K (2020) Performance enhancement of an ultra-scaled double-gate graphene nanoribbon tunnel field-effect transistor using channel doping engineering: quantum simulation study. AEU-Int. J. Electron. Commun. 122:153287

    Article  Google Scholar 

  20. Kim JH, Kim S, Park BG (2019) Double-gate TFET with vertical channel sandwiched by lightly doped Si. IEEE Trans. Electron Devices 66(4):1656–1661

    Article  CAS  Google Scholar 

  21. ATLAS (2015) User Manual. Silvaco International, Santa Clara

    Google Scholar 

  22. Lin YK, Khandelwal S, Duarte JP, Chang HL, Salahuddin S, Hu C (2016) A predictive tunnel FET compact model with atomistic simulation validation. IEEE Trans. Electron Devices 64(2):599–605

    Article  Google Scholar 

  23. Vandenberghe WG, Verhulst AS, Kao KH, Meyer KD, Sorée B, Magnus W, Groeseneken G (2012) A model determining optimal doping concentration and material’s band gap of tunnel field-effect transistors. Appl. Phys. Lett. 100(19):193509

    Article  Google Scholar 

  24. Boucart K, Ionescu AM (2007) Double-gate tunnel FET with high-$\kappa $ gate dielectric. IEEE Trans. Electron Devices 54(7):1725–1733

    Article  CAS  Google Scholar 

  25. Abdi DB, Kumar MJ (2014) In-built N+ pocket pnpn tunnel field-effect transistor. IEEE Electron Device Lett. 35(12):1170–1172

    Article  CAS  Google Scholar 

  26. Shih CH, Dang Chien N (2013) Physical operation and device design of short-channel tunnel field-effect transistors with graded silicon-germanium heterojunctions. J. Appl. Phys. 113(13):134507

    Article  Google Scholar 

  27. Choi WY, Park BG, Lee JD, Liu TJK (2007) Tunneling field-effect transistors (TFETs) with subthreshold swing (SS) less than 60 mV/dec. IEEE Electron Device Lett. 28(8):743–745

    Article  CAS  Google Scholar 

  28. Nagavarapu V, Jhaveri R, Woo JC (2008) The tunnel source (PNPN) n-MOSFET: a novel high performance transistor. IEEE Trans. Electron Devices 55(4):1013–1019

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zahra Ahangari.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahangari, Z., Mahmodi, S. Design and Sensitivity Analysis of Steep-Slope Bi-Channel Vertical Tunnel Field Effect Transistor. Silicon 13, 1917–1924 (2021). https://doi.org/10.1007/s12633-020-00579-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00579-y

Keywords

Navigation