Skip to main content
Log in

A Quest for (sila)0-4cyclopentasilylenes and their Arduengo Analogs by DFT

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Following our interest in exotic silylenes, here we compare and contrast 20 novel five-membered cyclic silylenes, including saturated (sila)0–4 cyclopentasilylenes (1–10) and unsaturated (sila)0-4cyclopentasilylenes-3-ene (1-10), reached at B3LYP/6–311++G** level of theory. Arduengo-type silasilylenes 1-10 turn out more stable than their corresponding 110, for showing higher singlet-triplet energy gap (ΔEs-t), with positive Gibbs free energy of hydrogenation (ΔGover). The band gaps (ΔEH-L) decrease by increasing the number of silicon atoms. Except for non-planar 10, 6, and 9, every 110 turns out more nucleophilic than its corresponding 1-10. The highest nucleophilicity (N), proton affinity (PA), chemical potential (μ), dihedral angle (D̂), reactivity, and the lowest NBO charge on the divalent Si atom is exhibited by Si-saturated 10.

Increasing silicons in 110 (and 1-10) decreases singlet-triplet energy gap (ΔEs-t). Every unsaturated 1-10 turns out more stable than its corresponding saturated 110 analog. As the most non-planar silylene, 10 exhibits the highest nucleophilicity (N), proton affinity (PA), chemical potential (μ), dihedral angle \( \left(\hat{\mathrm{D}}\right), \) reactivity, and the lowest NBO charge on divalent Si atom.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Becerra R, Walsh R (2010) Kinetic studies of reactions of organosilylenes: what have they taught us? Dalt Trans 39:9217–9228

    CAS  Google Scholar 

  2. Mizuhata Y, Sasamori T, Tokitoh N (2009) Stable heavier carbene analogues. Chem Rev 109:3479–3511

    CAS  PubMed  Google Scholar 

  3. Tokitoh N, Okazaki R (2000) Recent topics in the chemistry of heavier congeners of carbenes. Coord Chem Rev 210:251–277

    CAS  Google Scholar 

  4. Cote DR, Van Nguyen S, Stamper AK, Armbrust DS, Tobben D, Conti RA, Lee GY (1999) Plasma-assisted chemical vapor deposition of dielectric thin films for ULSI semiconductor circuits. IBM J Res Dev 43:5–38

    CAS  Google Scholar 

  5. Heaven MW, Metha GF, Buntine MA (2001) Reaction pathways of singlet silylene and singlet germylene with water, methanol, ethanol, dimethyl ether, and trifluoromethanol: an ab initio molecular orbital study. J Phys Chem A 105:1185–1196

    CAS  Google Scholar 

  6. Tamao K, Kobayashi M, Matsuo T, Furukawa S, Tsuji H (2012) The first observation of electroluminescence from di (2-naphthyl) disilene, an SiSi double bond-containing π-conjugated compound. Chem Commun 48:1030–1032

    CAS  Google Scholar 

  7. Nefedov OM, Egorov MP, Ioffe AI, Menchikov LG, Zuev PS, Minkin VI, Simkin BY, Glukhovstev MN (1992) Critical compilation of physical properties of short-lived intermediates: Carbenes and carbene analogues (technical report). Pure Appl Chem 64:265–314

    CAS  Google Scholar 

  8. Okazaki M, Tobita H, Ogino H (2003) Reactivity of silylene complexes. Dalt Trans:493–506

  9. Driess M, Yao S, Brym M, van Wüllen C, Lentz D (2006) A new type of N-heterocyclic silylene with ambivalent reactivity. J Am Chem Soc 128:9628–9629

    CAS  PubMed  Google Scholar 

  10. Haaf M, Schmiedl A, Schmedake TA, Powell DR, Millevolte AJ, Denk M, West R (1998) Synthesis and reactivity of a stable silylene. J Am Chem Soc 120:12714–12719

    CAS  Google Scholar 

  11. Denk M, Lennon R, Hayashi R, West R, Belyakov AV, Verne HP, Haaland A, Wagner M, Metzler N (1994) Synthesis and structure of a stable silylene. J Am Chem Soc 116:2691–2692

    CAS  Google Scholar 

  12. Kassaee MZ, Musavi SM, Ghambarian M (2006) A quest for triplet silylenes XHSi3 at ab initio and DFT levels (X= H, F, Cl and Br). J Organomet Chem 691:1845–1856

    CAS  Google Scholar 

  13. Vessally E, Nikoorazm M, Esmaili F, Fereyduni E (2011) Substitution effects at α-position of divalent five-membered ring XC 4 H 3 M (M= C, Si and Ge). J Organomet Chem 696:932–939

    CAS  Google Scholar 

  14. Kassaee MZ, Najafi Z, Shakib FA, Momeni MR (2011) Stable silylenes with acyclic, cyclic, and unsaturated cyclic structures: effects of heteroatoms and cyclopropyl α-substituents at DFT. J Organomet Chem 696:2059–2064

    CAS  Google Scholar 

  15. Ayoubi-Chianeh M, Kassaee MZ, Ashenagar S, Cummings PT (2019). Nucleophilicity of cyclic conjugated silylenes using DFT method J Phys Org Chem:e3956

  16. Ayoubi-Chianeh M, Kassaee MZ (2019) Novel silicon super bases at DFT level of theory: effects of fused benzene rings on the basicity of 2, 4, 6-cycloheptatrienesilylene. Res Chem Intermed 1–15

  17. Kassaee MZ, Koohi M, Mohammadi R, Ghavami M (2013) 2, 2, 9, 9-Tetramethylcyclonona-3, 5, 7-trienylidene vs. its heterocyclic analogues: a quest for stable carbenes at DFT. J Phys Org Chem 26:908–916

    CAS  Google Scholar 

  18. Koohi M, Kassaee MZ, Haerizade BN, Ghavami M, Ashenagar S (2015) Substituent effects on cyclonona-3, 5, 7-trienylidenes: a quest for stable carbenes at density functional theory level. J Phys Org Chem 28:514–526

    CAS  Google Scholar 

  19. Kassaee MZ, Koohi M (2013) Breathing viability into cyclonona-3, 5, 7-trienylidenes via α-dimethyl and ά-moieties at DFT. J Phys Org Chem 26:540–550

    CAS  Google Scholar 

  20. Arduengo III AJ, Harlow RL, Kline M (1991) A stable crystalline carbene. J Am Chem Soc 113:361–363

    CAS  Google Scholar 

  21. West R, Denk M (1996) Stable silylenes: synthesis, structure, reactions. Pure Appl Chem 68:785–788

    CAS  Google Scholar 

  22. Schmedake TA, Haaf M, Apeloig Y, Müller T, Bukalov S, West R (1999) Reversible transformation between a diaminosilylene and a novel disilene. J Am Chem Soc 121:9479–9480

    CAS  Google Scholar 

  23. Choi S-B, Boudjouk P (2000) Synthesis and characterization of dibenzannulated silole dianions. The 1, 1-dilithiosilafluorene and 1, 1′-dilithiobis (silafluorene) dianions. Tetrahedron Lett 41:6685–6688

    CAS  Google Scholar 

  24. Dhiman A, Müller T, West R, Becker JY (2004) Electrochemistry and computations of stable silylenes and germylenes. Organometallics 23:5689–5693

    CAS  Google Scholar 

  25. Schwartz RL, Davico GE, Ramond TM, Lineberger WC (1999) Singlet− triplet Splittings in CX2 (X= F, Cl, Br, I) Dihalocarbenes via negative ion photoelectron spectroscopy. J Phys Chem A 103:8213–8221

    CAS  Google Scholar 

  26. Holthausen MC, Koch W, Apeloig Y (1999) Theory predicts triplet ground-state organic silylenes. J Am Chem Soc 121:2623–2624

    CAS  Google Scholar 

  27. Kassaee MZ, Zandi H (2012) P-Heterocyclic silylenes: a survey of stability with density functional theory. J Phys Org Chem 25:50–57

    CAS  Google Scholar 

  28. Luke BT, Pople JA, Krogh-Jespersen M-B, Apeloig Y, Karni M, Chandrasekhar J, Schleyer PVR (1986) A theoretical survey of unsaturated or multiply bonded and divalent silicon compounds. Comparison with carbon analogs. J Am Chem Soc 108:270–284

    CAS  Google Scholar 

  29. Kalcher J, Sax AF (1992) Singlet-triplet splittings and electron affinities of some substituted silylenes. J Mol Struct THEOCHEM 253:287–302

    Google Scholar 

  30. Krogh-Jespersen K (1985) Structural and energetic features of fully substituted silylenes, disilenes, and silylsilylenes (SiX2, X2SiSiX2, and XSiSiX3; X= lithium, methyl, and fluorine). J Am Chem Soc 107:537–543

    CAS  Google Scholar 

  31. Yoshida M, Tamaoki N (2002) DFT study on triplet ground state silylenes revisited: the quest for the triplet silylene must go on. Organometallics 21:2587–2589

    Article  CAS  Google Scholar 

  32. Inoue S, Ichinohe M, Sekiguchi A (2008) Isolable alkali-metal-substituted Silyl radicals (t Bu2MeSi) 2SiM (M= Li, Na, K): electronically and Sterically accessible planar Silyl radicals. Organometallics 27:1358–1360

    CAS  Google Scholar 

  33. Sekiguchi A, Tanaka T, Ichinohe M, Akiyama K, Tero-Kubota S (2003) Bis (tri-tert-butylsilyl) silylene: triplet ground state silylene. J Am Chem Soc 125:4962–4963

    CAS  PubMed  Google Scholar 

  34. West R, Fink MJ, Michl J (1981) Tetramesityldisilene, a stable compound containing a silicon-silicon double bond. Science 214(80):1343–1344

    CAS  Google Scholar 

  35. Ayoubi-Chianeh M, Kassaee MZ (2019) Toward triplet disilavinylidenes: A Hammett electronic survey for substituent effects on singlet-triplet energy gaps of silylenes by DFT. J Phys Org Chem e3988

  36. Maier G, Reisenauer HP, Glatthaar J (2002) Reactions of silicon atoms with methane and Silane in solid argon: a matrix-spectroscopic study. Chem Eur J 8:4383–4391

    CAS  PubMed  Google Scholar 

  37. Bogey M, Bolvin H, Demuynck C, Destombes JL (1991) Nonclassical double-bridged structure in silicon-containing molecules: experimental evidence in Si 2 H 2 from its submillimeter-wave spectrum. Phys Rev Lett 66:413

    CAS  PubMed  Google Scholar 

  38. Bogey M, Bolvin H, Cordonnier M, Demuynck C, Destombes JL, Császárs AG (1994) Millimeter-and submillimeter-wave spectroscopy of dibridged Si2H2 isotopomers: experimental and theoretical structure. J Chem Phys 100:8614–8624

    CAS  Google Scholar 

  39. Andrews L, Wang X (2002) Infrared spectra of the novel Si2H2 and Si2H4 species and the SiH1, 2, 3 intermediates in solid neon, argon, and deuterium. J Phys Chem A 106:7696–7702

    CAS  Google Scholar 

  40. Yang T, Dangi BB, Kaiser RI, Chao K, Sun B, Chang AHH, Nguyen TL, Stanton JF (2017) Gas-phase formation of the Disilavinylidene (H2SiSi) transient. Angew Chemie Int Ed 56:1264–1268

    CAS  Google Scholar 

  41. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38:3098

    CAS  Google Scholar 

  42. Becke AD, Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  43. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37:785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  44. Nemukhin AV, Grigorenko BL, Granovsky AA (2004) Molecular modeling by using the PC GAMESS program: from diatomic molecules to enzymes. Mosc Univ Chem Bull 45:75

    Google Scholar 

  45. Fletcher GD, Schmidt MW, Bode BM, Gordon MS (2000) The distributed data interface in GAMESS. Comput Phys Commun 128:190–200

    CAS  Google Scholar 

  46. Bode BM, Gordon MS (1998) Macmolplt: a graphical user interface for GAMESS. J Mol Graph Model 16:133–138

    CAS  PubMed  Google Scholar 

  47. Umeda H, Koseki S, Nagashima U, Schmidt MW (2001) Parallelization of multireference perturbation calculations with GAMESS. J Comput Chem 22:1243–1251

    CAS  Google Scholar 

  48. Domingo LR, Chamorro E, Pérez P (2008) Understanding the reactivity of captodative ethylenes in polar cycloaddition reactions. A theoretical study. J Org Chem 73:4615–4624

    CAS  PubMed  Google Scholar 

  49. Parr RG, Szentpály L, Liu S (1999) Electrophilicity index. J Am Chem Soc 121:1922–1924

    CAS  Google Scholar 

  50. Yang W, Parr RG (1985) Hardness, softness, and the Fukui function in the electronic theory of metals and catalysis. Proc Natl Acad Sci 82:6723–6726

    CAS  PubMed  Google Scholar 

  51. Sheela NR, Muthu S, Sampathkrishnan S (2014) Molecular orbital studies (hardness, chemical potential and electrophilicity), vibrational investigation and theoretical NBO analysis of 4-4′-(1H-1, 2, 4-triazol-1-yl methylene) dibenzonitrile based on abinitio and DFT methods. Spectrochim Acta Part A Mol Biomol Spectrosc 120:237–251

    CAS  Google Scholar 

  52. Yang W, Pan Y, Zheng F, Cho H, Tai H-H, Zhan C-G (2009) Free-energy perturbation simulation on transition states and redesign of butyrylcholinesterase. Biophys J 96:1931–1938

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Takeuchi K, Ichinohe M, Sekiguchi A (2012) A new Disilene with π-accepting groups from the reaction of Disilyne RSi□ SiR (R= Si i Pr [CH (SiMe3) 2]) with isocyanides. J Am Chem Soc 134:2954–2957

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We gratefully appreciate Tarbiat Modares University for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamad Z. Kassaee.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 41.9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ayoubi-Chianeh, M., Kassaee, M.Z. A Quest for (sila)0-4cyclopentasilylenes and their Arduengo Analogs by DFT. Silicon 13, 939–960 (2021). https://doi.org/10.1007/s12633-020-00441-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-020-00441-1

Keywords

Navigation