Skip to main content
Log in

Optical, FTIR and DC Conductivity of Soda Lime Silicate Glass Containing Cement Dust and Transition Metal Ions

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Four soda lime silicate glass samples of composition (70 % SiO2+ 20 % Na2O+ 10 % CaO mol %) were prepared after adding 5 wt% cement dust to each sample mixture besides 0.1 wt% of one transition metal (TM) oxide of Fe, Co or Cu. The four samples were melted by a conventional melt-annealing technique at 1400 C for 2.5 h. Density, UV/VIS, FTIR and DC conductivity measurements were performed for each glass. Experimental results indicate that there are only slight differences in the density values. The optical spectra reveal that the TM free sample and the sample containing iron ions have the same spectral features while the samples containing copper or cobalt exhibit distinct characteristic absorption bands due to each TM ion. FTIR spectra reveal characteristic vibrational bands due to stretching and bending modes of the silicate network. DC conductivity data show variations in the values of the studied samples according to the type of TM ions added. All the experimental results were correlated with each other in accordance with the current views on the constitution of the studied glasses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tooley FR (1984) The Handbook of Glasses Manufacture Vol1, Books for the Glasses Industry Division. Ashlee Publishing Co.Inc., New York

    Google Scholar 

  2. Shelby JE (2005) Introduction to Glass Science and Technology, 2nd Edition. The Royal Society of Chemistry, Cambridge, UK

    Google Scholar 

  3. (1962). In: Bates T, Mackenzie JD (eds) Modern Aspects of the Vitreous State, vol 2. Butterworths, London, U.K., pp 195–243

  4. Bamford CR (1977) Colour Generation and Control in Glass: Glass Science and Technology, vol 2. Elsevier, Amsterdam

  5. ElBatal FH, AboNaf SM, Ezz ElDin FM (2005) Ind J Pure Appl Phys 43:579

    CAS  Google Scholar 

  6. ElBatal FH, Marzouk SY, Azooz MA (2006) Phys Chem Glasses Euro J Glass Sci Technol (B) 47:588

    CAS  Google Scholar 

  7. ElBatal FH, Marzouk SY, Azooz MA, AboNaf SM (2008) Opt Mater 30:881

    Article  CAS  Google Scholar 

  8. ElBatal FH, Hamdy YM, Marzouk SY (2009) J Non-Cryst Solids 355:2434–2447

    Article  Google Scholar 

  9. Sayer M, Mansingh A (1972) Phys Rev (B) 6:4629

    Article  CAS  Google Scholar 

  10. Mansingh A, Vaid JK, Tondon RP (1977) J Phys (C) Solid State Phys 10:4061

    Article  CAS  Google Scholar 

  11. Dutta B, Fahmy NA, Pegg IL (2006) J Non-Cryst Solids 352:2100

    Article  CAS  Google Scholar 

  12. Roumaih Kh R, Kaiser M, ElBatal FH, Ali IS (2011) Phil Mag 91(29):3830–3843

  13. Newton R, Davison S (1989) Conservation of Glass. Butterworths, London

    Google Scholar 

  14. Bahgat AA, Makram BAA, Shaisha EE, El-Desoky MM (2010) J Alloys Compd 506:141–150

    Article  CAS  Google Scholar 

  15. Mariappan CR, Govindaraj G (2002) Mater Sci Eng B 94:82

    Article  Google Scholar 

  16. Tarte P (1962) Spectrochim Acta 18:467–472

    Article  CAS  Google Scholar 

  17. Condrate R (1972) in Introduction to Glass Science. Plenum Press, New York, p 101

    Book  Google Scholar 

  18. ELBatal FH, Azooz MA, Marzouk SY (2007) Physica B 398:126–134

    Article  CAS  Google Scholar 

  19. Wong J, Angell CA (1976) Glass Structure by Spectroscopy. Marcel Dekker, New York

    Google Scholar 

  20. Merzbacher CI, White WB (1991) Non – Cryst J Solids 130:18–30

    Article  CAS  Google Scholar 

  21. Abdelghany AM, ElBatal HA (2014) J Mol Struct 1067:138–146

    Article  CAS  Google Scholar 

  22. ElBatal FH, Abdelghany AM, ElBatal HA (2014) Spectrochim Acta A Mol Biomol Spectrosc 122:461–468

    Article  CAS  Google Scholar 

  23. Abdelghany AM (2010) Silicon 2:179–184

    Article  CAS  Google Scholar 

  24. El-Batal FH, Khalil EM, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) Silicon 2:41–47

    Article  CAS  Google Scholar 

  25. Khalil EMA, ElBatal FH, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) Physica B 405:1294–1300

    Article  CAS  Google Scholar 

  26. Sigel GH, Ginther RJ (1968) Glass Technol 9:66–73

    CAS  Google Scholar 

  27. (1977). In: Sigel GH., Tomozawa M, Doremus RH (eds) Treatise on Materials Science and Technology, vol 12. Academic Press, New York, pp 61–89

  28. Cook L, Mader KH, Amer J (1982) Ceram Soc 65:690–696

    Article  Google Scholar 

  29. Duffy JA, Ingram MD (1970) J Chem Phys 52:3752–758

    Article  CAS  Google Scholar 

  30. Duffy JA (1997) Phys Chem Glasses 38:289–294

    CAS  Google Scholar 

  31. Natura U, Ehrt D (1989) Glastech Ber Glass Science Technol 72:295–302

    Google Scholar 

  32. Paul A (1990) Chemistry of Glasses, 2nd ed. Chapmann and Hall, London and New York

    Google Scholar 

  33. Mott NF (1968) J Non-Cryst Solids 1:1

    Article  CAS  Google Scholar 

  34. Souquet JL, Levy M, Ducholat M (1994) Solid State Ion:337

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed M. Ibrahim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ibrahim, M.M., A.Fanny, M., Hassaan, M.Y. et al. Optical, FTIR and DC Conductivity of Soda Lime Silicate Glass Containing Cement Dust and Transition Metal Ions. Silicon 8, 443–453 (2016). https://doi.org/10.1007/s12633-015-9362-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9362-z

Keywords

Navigation