Skip to main content
Log in

The Elusory Role of Low Level Doping Transition Metals in Lead Silicate Glasses

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A deconvolution method based iterative system was employed for the analysis of Infrared (IR) absorption spectra of some prepared lead silicate unfilled glasses together with samples filled with a low doping level of one of the first 3d-transition metal oxides (TMO’s) (TiO2→CuO) in the region of 4,000-400 cm-1. The IR spectra were analyzed to determine, evaluate, differentiate the various vibrational modes and to retrace precisely the role of low level doping of the different TMO’s in the structural changes. The first examination reveals a close similarity between the different transition metals doped samples, but careful inspection indicates there are some minor differences depending on the type of TM ions. These observed data are correlated with the similarity of the 3d orbitals in the neutral atoms and when the atoms are ionized. It was also observed that the 3d orbitals become more stable than the 4s orbitals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wong J, Angell CA (1976) Glass structure by spectroscopy. Dekker, New York

    Google Scholar 

  2. Efimov AM (1999) J Non-Cryst Solids 235:95

    Article  Google Scholar 

  3. Kamitsos EI, Varsamis CPE, Vegeri A (2001) Proc. Int. Glass, congres vol. I, Invited paper, Edimbargh, Scotland. pp 234–246

  4. Kamitsos EI (2003) Phys Chem Glasses 44:79

    CAS  Google Scholar 

  5. Exarhos GJ (1986) In: Walrafen GE, Revesz AG (Eds.) Structure and bonding in Non-Crystalline Solids, Plenum, New York. p 203

  6. Bates T (1962) Modern aspects of the vitreous state, Vol.2, Chapter 5, Ed. Mackenzie JD, Butterworths, London, p 195

  7. Bamford CR (1977) Colour generation and control in glass, glass science & technology. Elsevier Scientific Publishing Company, Amsterdam

    Google Scholar 

  8. Khalil MM (2007) Appl. Phys A86:505

    Google Scholar 

  9. Shelby JE (1997) Introduction to glass science & technology. The Royal Socity of Chemistry, Cambridge

    Google Scholar 

  10. Levelut C, Le Parc R, Faivre A, Champagnon B (2006) J Non-Cryst Solids 352:4495

    Article  CAS  Google Scholar 

  11. Tomozawa M, Hong JW, Ryu SR (2005) J Non-Cryst Solids 351:1054

    Article  CAS  Google Scholar 

  12. Rabinovich E (1976) J Mater Sci 11:925

    Article  CAS  Google Scholar 

  13. Weinstein IA, Zatsepin AF, Kortov VS (2001) J Non-Cryst Solids 279:77

    Article  CAS  Google Scholar 

  14. Schlenz H, Kirfel A, Schulmeister K, Wartner N, Mader W, Raberg W, Wandelt K, Oligschleger C, Bender S, Franke R, Hormes J, Hoffbauer W, Lansmann V, Jansen M, Zotov N, Mariam C, Putz H, Neuefeind J (2002) J Non-Cryst Solids 297:37

    Article  CAS  Google Scholar 

  15. Micoulaut M, Malki M, Simon P, Canizares A (2005) Philos Mag 85:3357

    Article  CAS  Google Scholar 

  16. Rybicki J, Rybicka A, Witkowska A, Bergmanski G, Di Cicco A, Minicucci M, Mancini G (2001) J Phys: Condens Matter 13:9781

    Article  CAS  Google Scholar 

  17. Hoppe U, Kranold U, Ghosh A, Landron C, Neuefeind J, Jovari P (2003) J Non-Cryst Solids 328:146

    Article  CAS  Google Scholar 

  18. Imaoka M, Hasegawa H, Yasui I (1986) J Non-Cryst Solids 85:393

    Article  CAS  Google Scholar 

  19. Wang PW, Zhang L (1996) J Non-Cryst Solids 194:129

    Article  CAS  Google Scholar 

  20. Fayon F, Bessada C, Massiot D, Farnan I, Coutures JP (1998) J Non-Cryst Solids 232–234:403

    Article  Google Scholar 

  21. Takaishi T, Takahashi M, Jin J, Uchino T, Yoko T (2005) J Am Ceram Soc 88:1591

    Article  CAS  Google Scholar 

  22. Tanaka K, Yamada N, Oto M (2003) Appl Phys Lett 83:3012

    Article  CAS  Google Scholar 

  23. Khalil MI, ElBatal FH, Nada N, Desouky SA (2003) Indian J Pure & Appl Phys 41:851

    Google Scholar 

  24. ElBatal FH, Nada N, Desouky SA, Khalil MI (2004) Indian J Pure & Appl Phys 42:711

    CAS  Google Scholar 

  25. Merzbacher CI, White WB (1991) J Non-Cryst Solids 130:18

    Article  CAS  Google Scholar 

  26. Husung RD, Doremus RH (1990) J Mater Res 5(10):2209

    Article  CAS  Google Scholar 

  27. El-Batal FH, Khalil EMA, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) Physica B 504:1294

    Google Scholar 

  28. Dunken H, Doremus RH (1987) J Non-Cryst Solids 92:61

    Article  CAS  Google Scholar 

  29. Efimov AM (2003) J Non Cryst Solids 93:334

    Google Scholar 

  30. Khalil EMA, El-Batal FH, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) Silicon 2:49

    Article  CAS  Google Scholar 

  31. Navara G (2007) J Non-Cryst Solids 353:555

    Article  Google Scholar 

  32. Efimov AM (1995) Optical constants of inorganic glasses. CRC, Boca Raton

    Google Scholar 

  33. Efimov AM (1996) J Non-Cryst Solids 203:1

    Article  CAS  Google Scholar 

  34. MdR A, Mortuzal MG (2005) J Non-Cryst Solids 351:2333

    Article  Google Scholar 

  35. El-Batal FH, Khalil EMA, Hamdy YM, Zidan HM, Aziz MS, Abdelghany AM (2010) Silicon 2:41

    Article  CAS  Google Scholar 

  36. Sari SO, Hollingsworth-Smith P, Ona H (1978) J Phys Chem Solids 39:857

    Article  Google Scholar 

  37. Mirogrodskii AP, Pavinich VF, Lazarev AN (1980) In: Lazarev AN (ed) Vibrations of Oxide Lattices. Nauka, Moscow

  38. Bell RJ, Bird NF, Dean P (1968) J Phys C1:299

    Google Scholar 

  39. Villegas MA, Fernandez Navarro JM (1988) J Mat Sci 23:2464

    Article  CAS  Google Scholar 

  40. Agarwal A, Tomozawa M (1997) J Non-Cryst Solids 209:166

    Article  CAS  Google Scholar 

  41. Cotton FA, Wilkinson G, Murillo CA, Bochmann M (1999) Advanced inorganic chemistry, 6th edn. Wiley, New York

    Google Scholar 

  42. Bates T (1962) Ligend field theory and absorption spectra of transition metal ions in glasses. In: Mackenzie JD (ed) Modern aspects of the vitreous state, vol 2. Butterworths, London, p 175

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Abdelghany.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abdelghany, A.M. The Elusory Role of Low Level Doping Transition Metals in Lead Silicate Glasses. Silicon 2, 179–184 (2010). https://doi.org/10.1007/s12633-010-9053-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-010-9053-8

Keywords

Navigation