Skip to main content

Advertisement

Log in

A Facile Route to the Synthesis of Hydroxyapatite/ Wollastonite Composite Powders by a Two-Step Coprecipitation Method

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

A facile and fast method has been developed to synthesize pure hydroxyapatite/wollastonite (HAp/WT) composite powders of different weight ratio. HAp/WT composites could be easily prepared by a two-step coprecipitation route and subsequent heating of the precipitant for 2 h, using Ca(OH) 2 and H 3PO4 as starting materials in the first step then adding Ca(NO 3) 2.4H 2O and Na 2SiO 3.9H 2O in the second step. XRD, FT-IR and XRF analyses confirmed the synthesis of pure HAp/WT composite powders. SEM data showed that the synthetic composites have agglomerated particles consisting of small particles with size less than 1 μm. The results indicates that this route for synthesis of HAp/WT composites is promising for medical applications such as bone repair substitutes and drug carriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang C, Xue Y, Lin K, Lu J, Chang J, Sun J (2009) The enhancement of bone regeneration by a combination of osteoconductivity and osteostimulation using β-CaSiO3/β-Ca3(PO4)2 composite bioceramics. Acta Biomater. 8:350– 360

    Article  Google Scholar 

  2. Nair MB, Babu SS, Varma HK, John A (2008) A triphasic ceramic-coated porous hydroxyapatite for tissue engineering application. Acta Biomater. 4:173–181

    Article  CAS  Google Scholar 

  3. Sprio S, Tampieri A, Celotti G (2009) Landi E. Development of hydroxyapatite/calcium silicate composites addressed to the design of load-bearing bone scaffolds. J. Mech. Behav. Biomed. Mater. 2:147–155

    Article  Google Scholar 

  4. Ulum MF, Arafat A, Noviana D, Yusop AH, Nasution AK, Abdul Kadir MR, Hermawan H (2014) In vitro and in vivo degradation evaluation of novel iron-bioceramic composites for bone implant applications. Mater. Sci. Eng. C 36:336– 344

    Article  CAS  Google Scholar 

  5. Padmanabhan SK, Gervaso F, Carrozzo M, Scalera F, Sannino A, Licciulli A (2013) Wollastonite/hydroxyapatite scaffolds with improved mechanical, bioactive and biodegradable properties for bone tissue engineering. Ceram. Int. 39:619–627

    Article  Google Scholar 

  6. Guo Han, Wei Jie, Song Wenhua, Zhang Shan, Yan Yonggang, Liu Changsheng, Xiao Tiqiao (2012) Wollastonite nanofiber–doped self-setting calcium phosphate bioactive cement for bone tissue regeneration. Int. J. Nanomedicine 7:3613–3624

    Article  CAS  Google Scholar 

  7. Best SM, Porter AE, Thian ES, Huang J (2008) Bioceramics: past, present and for the future. J. Eur. Ceram. Soc. 28:1319–1327

    Article  CAS  Google Scholar 

  8. Wise DL, Trantolo DJ, Lewandrowski KU, Gresser JD, Cattaneo MV, Yaszemski MJ (2000) Biomaterials engineering and devices, human applications, Vol.1. Humana Press Inc, New Jersey

    Book  Google Scholar 

  9. Chu PK, Liu X (2008) Biomaterials Fabrication and Processing handbook. CRC Press Taylor & Francis Group, London

    Google Scholar 

  10. Luo ZS, Cui FZ, Feng QL, Li HD, Zhu XD (2000) Spector M. In vitro and in vivo evaluation of degradability of hydroxyapatite coatings synthesized by ion beam-assisted deposition. Surf. Coat. Technol. 131:192–195

    Article  CAS  Google Scholar 

  11. Oktar FN, Agathopoulos S, Ozyegin LS, Gunduz O, Demirkol N, Bozkurt Y, Salman S (2007) Mechanical properties of bovine hydroxyapatite (BHA) composites doped with SiO 2, MgO, Al 2 O 3, and ZrO 2. J. Mater. Sci. Mater. Med. 18:2137–43

    Article  CAS  Google Scholar 

  12. Ikeda N, Kawanabe K, Nakamura T (1999) Quantitative comparison of osteoconduction of porous, dense A–W glass–ceramic and hydroxyapatite granules (effects of granule and pore sizes). Biomaterials 20:1087–1095

    Article  CAS  Google Scholar 

  13. Bernardo E, Colombo P, Cacciotti I, Bianco A, Bedini R, Pecci R, Pardun K, Treccani L, Rezwan K (2012) Porous wollastonite–hydroxyapatite bioceramics from a preceramic polymer and micro- or nano-sized fillers. J. Eur. Ceram. Soc. 32:399–408

    Article  CAS  Google Scholar 

  14. Shumkova VV, Pogrebenkov VM, Karlov AV, Kozik VV, Vereshchagin VI (2000) Hydroxyapatite–Wollastonite Bioceramics. Glas. Ceram. 57:9–10

    Article  Google Scholar 

  15. Kokubo T, Ito S, Shigematsu M, Sakka S, Yamamuro T (1985) Apatite and wollastonite containing glass ceramics for prosthetic application. Mater. Sci. 20:2001–04

    Article  CAS  Google Scholar 

  16. Kokubo T (1991) Bioactive glass ceramics: properties andapplications. Biomaterials 12:155–63

    Article  CAS  Google Scholar 

  17. Calver A, Hill RG, Stamboulis A (2004) Influence of fluorine content on the crystallization behavior of apatite-wollastonite glass-ceramics. Mater. Sci. 39:2601–2603

    Article  CAS  Google Scholar 

  18. Saadaldin SA, Rizkalla AS (2014) Synthesis and characterization of wollastoniteglass–ceramics for dental implant applications. Dent. Mater. 30:364–371

    Article  CAS  Google Scholar 

  19. Magallanes-Perdomo M, Luklinska ZB, De Aza AH, Carrodeguas RG, De Aza S, Pena P (2011) Bone-like forming ability of apatite–wollastonite glass ceramic. J. Eur. Ceram. Soc. 31:1549–1561

    Article  CAS  Google Scholar 

  20. Magallanes-Perdomo M, Pena P, De Aza PN, Carrodeguas RG, Rodriguez MA, Turrillas X (2009) Devitrification studies of wollastonite–tricalcium phosphate eutectic glass. Acta Biomater. 5:3057–66

    Article  CAS  Google Scholar 

  21. Dhand V, Rhee KY, Park SJ (2014) The facile and low temperature synthesis of nanophase hydroxyapatite crystals using wet chemistry. Mater. Sci. Eng. C 36:152–159

    Article  CAS  Google Scholar 

  22. Bakan F, Laçin O, Sarac H (2013) A novel low temperature sol–gel synthesis process for thermally stable nano crystalline hydroxyapatite. Powder Technol. 233:295–302

    Article  CAS  Google Scholar 

  23. Lin K, Zhang M, Zhai W, Qu H, Changw J (2011) Fabrication and Characterization of Hydroxyapatite/Wollastonite Composite Bioceramics with Controllable Properties for Hard Tissue Repair. J. Am. Ceram. Soc. 94:99–105

    Article  CAS  Google Scholar 

  24. Encinas-Romero MA, Aguayo-Salinas S (2008) Synthesis and Characterization of Hydroxyapatite–Wollastonite Composite Powders by Sol–Gel Processing. Int. J. Appl. Ceram. Technol. 5:401–411

    Article  CAS  Google Scholar 

  25. Lin K, Chang J, Liu X, Ning C (2010) Synthesis and Characterization of Nanocomposite Powders Composed of Hydroxyapatite Nanoparticles and Wollastonite Nanowires. Int. J. Appl. Ceram. Technol. 7:178–183

    Article  CAS  Google Scholar 

  26. Lin K, Chang J, Chen G, Ruan M, Ning C (2007) A simple method to synthesize single-crystalline β-wollastonite nanowires. J. Cryst. Growth 300:267–271

    Article  CAS  Google Scholar 

  27. Li X, Shi J, Zhu Y, Shen W, Li H, Liang J, Gao J (2007) A Template Route to the Preparation of Mesoporous Amorphous Calcium Silicate With High In Vitro Bone-Forming Bioactivity. J. Biomed. Mater. Res. Part. B: Appl. Biomater 83B:431–439

    Article  CAS  Google Scholar 

  28. Vichaphund S, Kitiwan M, Atong D, Thavorniti P (2011) Microwave synthesis of wollastonite powder from eggshells. J. Eur. Ceram. Soc 31:2435–2440

    Article  CAS  Google Scholar 

  29. (1996) JCPDS Card No. 00-09-0432

  30. (1996) JCPDS Card No. 00-84-0654

  31. Yan XX, Yu CZ, Zhou XF, Tang JW, Zhao DY (2004) Highly ordered mesoporous bioactive glasses with superior in vitro bone-forming bioactivities. Angew. Chem. Int. Ed. Engl. 43:5980–5984

    Article  CAS  Google Scholar 

  32. Siriphannon P, Hayashi S, Yasumori A, Okada K (1999) Preparation and Sintering of CaSiO3 from Coprecipitated Powder Using NaOH as Precipitant and Its Apatite Formation in Simulated Body Fluid Solution. J. Mater. Res. 14:529–36

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Morsy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsy, R., Abuelkhair, R. & Elnimr, T. A Facile Route to the Synthesis of Hydroxyapatite/ Wollastonite Composite Powders by a Two-Step Coprecipitation Method. Silicon 9, 637–641 (2017). https://doi.org/10.1007/s12633-015-9339-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-015-9339-y

Keywords

Navigation