Skip to main content
Log in

Uniaxial Stress Induced Electron Mobility Enhancement in Silicon

  • Original paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

The conduction band structure of Si under uniaxial [100] stress is investigated by using the two band k·p perturbation theory. The conduction band parameters, including the conduction band minimum energy shift, split and electron effective mass change are quantitative described. Based on these band parameters, uniaxial stress induced electron mobility enhancment is systematically studied through Boltzmann transport theory. The results show that, when uniaxial [100] stress is applied to Si crystal, a gain of more than 50 % in electron mobility can be obtained. The electron mobility along the [100] increase with tensile stress and decrease with compressive stress, while does the opposite for the electron mobility along the [010] and [001]. The electron mobility along the [100], [010] and [001] tend to saturate for stress beyond a certain level. The stress induced the reduction of conductivity effective mass and the suppression of inter-valley scattering rate are responsible for the enhancement of electron mobility. The calculated results provide valuable reference for the optimum stress and orientation of the conduction channel in the uniaxial strained Si nMOS devices design. The electron mobility calculated model used in the present work is suitable for implementation in TCAD simulators.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baykan MO, Thompson SE, Nishida T (2010) J Appl Phys 9:093716

    Article  Google Scholar 

  2. Thompson SE, Sun G, Choi YS, Nishida T (2006) IEEE Trans Electron Devices 5:1010–1020

    Article  Google Scholar 

  3. Flachowsky S, Wei A, Illgen R, Herrmann T, Hontschel J, Horstmann M, Stenzel R (2010) IEEE Trans Electron Devices 6:1343–1354

    Article  Google Scholar 

  4. Thompson SE, Sun GY, Sung YC (2006) IEEE Trans Electron Devices 5:1010–1020

    Article  Google Scholar 

  5. Irisawa T, Okano K, Horiuchi T, Itokawa H, Mizushima I, Usuda K, Tezuka T, Sugiyama N, Takagi SI (2009) IEEE Trans Electron Devices 8:1651–1658

    Article  Google Scholar 

  6. Dhar S, Kosina H, Palankovski V, Ungersboeck SE, Selberherr S (2005) IEEE Trans Electron Devices 4:527–533

    Article  Google Scholar 

  7. Decai Y, Yu Z, Liu F (2008) Phys Rev B 24:245204

    Google Scholar 

  8. Kima J, Fischetti MV (2010) J Appl Phys 1:013710

    Article  Google Scholar 

  9. Bir GL, Pikus GE (1974) Symmetry and strain-induced effects in semiconductors. Wiley, New York

    Google Scholar 

  10. Sverdlov V, Karlowatz G, Dhar S, Kosina H, Selberherr S (2008) Solid-State Electron 10:1563–1568

    Article  Google Scholar 

  11. Seeger K (1973) Semiconductor physics. Springer, New York

    Google Scholar 

  12. Ferry DK (1976) Surf Sci 1:218–228

    Article  Google Scholar 

  13. Tang JY, Hess K (1983) J Appl Phys 9:5145–5151

    Article  Google Scholar 

  14. Fischetti MV, Laux SE (1996) J Appl Phys 4:2234–2252

    Article  Google Scholar 

  15. Kotlyar R, Giles MD, Cea S, Linton TD, Shifren L, Weber C, Stettler M (2009) J Comput Electron 2:110–123

    Article  Google Scholar 

  16. Maegawa T, Yamauchi T, Hara T, Tsuchiya H, Ogawa M (2009) IEEE Trans Electron Devices 4:553–559

    Article  Google Scholar 

  17. Seo WH, Donegan JF (2003) Phys Rev B 7:075318

    Article  Google Scholar 

  18. Schaffler F, Herzog HJ, Jorke H, Kasper E (1991) J Vac Sci Technol B 4:2039–2044

    Article  Google Scholar 

  19. Jacoboni C, Canali C, Ottaviani G, Quaranta A (1977) Solid State Electron 20:77–89

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. Ma.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ma, J.L., Fu, Z.F., Wei, Q. et al. Uniaxial Stress Induced Electron Mobility Enhancement in Silicon. Silicon 5, 219–224 (2013). https://doi.org/10.1007/s12633-013-9144-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-013-9144-4

Keywords

Navigation