Skip to main content
Log in

Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Under the background of a transformation of the global energy structure, coal gasification technology has a wide application prospect, but its by-product, the coal gasification residue (CGR), is still not being efficiently utilized for recycling. The CGR contains abundant carbon components, which could be applied to the microwave absorption field as the carbon matrix. In this study, Fe/CGR composites are fabricated via a two-step method, including the impregnation of Fe3+ and the reduction process. The influence of the different loading capacities of the Fe component on the morphology and electromagnetic properties is studied. Moreover, the loading content of Fe and the surface morphology of the Fe/CGR can be reasonably controlled by adjusting the concentration of the ferric nitrate solution. Meanwhile, Fe particles are evenly inserted on the CGR framework, which expands the Fe/CGR interfaces to enhance interfacial polarization, thus further improving the microwave-absorbing (MA) properties of composites. Particularly, as the Fe3+ concentration is 1.0 mol/L, the Fe/CGR composite exhibits outstanding performance. The reflection loss reaches −39.3 dB at 2.5 mm, and the absorption bandwidth covers 4.1 GHz at 1.5 mm. In this study, facile processability, resource recycling, appropriately matched impedance, and excellent MA performance are achieved. Finally, the Fe/CGR composites not only enhance the recycling of the CGR but also pioneer a new path for the synthesis of excellent absorbents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L.H. Wu, X. Liu, G.P. Wan, et al., Ni/CNTs and carbon coating engineering to synergistically optimize the interfacial behaviors of TiO2 for thermal conductive microwave absorbers, Chem. Eng. J., 448(2022), art. No. 137600.

  2. H.M. Kuo, T.F. Hsui, Y.S. Tuo, and C.L. Yuan, Microwave adsorption of core-shell structured Sr(MnTi)xFe12−2xO19/PANI composites, J. Mater. Sci., 47(2012), No. 5, p. 2264.

    Article  CAS  Google Scholar 

  3. C.X. Wang, B.B. Wang, X. Cao, et al., 3D flower-like Co-based oxide composites with excellent wideband electromagnetic microwave absorption, Composites Part B, 205(2021), art. No. 108529.

  4. M. Ma, Q. Zheng, Y.H. Zhu, L. Li, and M.S. Cao, Confinedly implanting Fe3O4 nanoclusters on MoS2 nanosheets to tailor electromagnetic properties for excellent multi-bands microwave absorption, J. Materiomics, 8(2022), No. 3, p. 577.

    Article  Google Scholar 

  5. Z.C. Wu, C. Jin, Z.Q. Yang, and R.C. Che, Integrating hierarchical interfacial polarization in yeast-derived Mo2C/C nanoflower/microsphere nanoarchitecture for boosting microwave absorption performance, Carbon, 189(2022), p. 530.

    Article  CAS  Google Scholar 

  6. M.F. Zhou, X.F. Xu, G.P. Wan, P.P. Mou, S.J. Teng, and G.Z. Wang, Rationally tailoring interface characteristics of ZnO/amorphous carbon/graphene for heat-conduction microwave absorbers, Nano Res., 15(2022), No. 10, p. 8677.

    Article  CAS  Google Scholar 

  7. X.C. Di, Y. Wang, Z. Lu, R.R. Cheng, L.Q. Yang, and X.M. Wu, Heterostructure design of Ni/C/porous carbon nanosheet composite for enhancing the electromagnetic wave absorption, Carbon, 179(2021), p. 566.

    Article  CAS  Google Scholar 

  8. R.R. Cheng, Y. Wang, X.C. Di, et al., Construction of MOF-derived plum-like NiCo@C composite with enhanced multi-polarization for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 224.

    Article  CAS  Google Scholar 

  9. H.R. Geng, X. Zhang, W.H. Xie, et al., Lightweight and broadband 2D MoS2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption, J. Colloid Interface Sci., 609(2022), p. 33.

    Article  CAS  Google Scholar 

  10. X.L. Chen, W. Wang, T. Shi, G.L. Wu, and Y. Lu, One pot green synthesis and EM wave absorption performance of MoS2@nitrogen doped carbon hybrid decorated with ultrasmall cobalt ferrite nanoparticles, Carbon, 163(2020), p. 202.

    Article  CAS  Google Scholar 

  11. P.B. Liu, Y. Wang, G.Z. Zhang, et al., Hierarchical engineering of double-shelled nanotubes toward hetero-interfaces induced polarization and microscale magnetic interaction, Adv. Funct. Mater., 32(2022), No. 33, art. No. 2202588.

  12. Y. Fan, J.Y. Wang, X.M. Zhang, et al., Coal-based carbon/FeCo magnetic composites with layered stripes as novel lightweight microwave absorber, Diam. Relat. Mater., 120(2021), art. No. 108685.

  13. B.C. Wang, Y. Zhang, Y. Yang, et al., Facile preparation of carbon nanosheet frameworks/magnetic nanohybrids with heterogeneous interface as an excellent microwave absorber, J. Alloys Compd., 838(2020), art. No. 155586.

  14. R.W. Shu, Y. Wu, X.H. Li, N.N. Li, and J.J. Shi, Fabrication of bimetallic metal-organic frameworks derived cobalt iron alloy@carbon-carbon nanotubes composites as ultrathin and high-efficiency microwave absorbers, J. Colloid Interface Sci., 613(2022), p. 477.

    Article  CAS  Google Scholar 

  15. Y. Wang, X.C. Di, Z. Lu, R.R. Cheng, X.M. Wu, and P.H. Gao, Controllable heterogeneous interfaces of cobalt/carbon nanosheets/rGO composite derived from metal-organic frameworks for high-efficiency microwave attenuation, Carbon, 187(2022), p. 404.

    Article  CAS  Google Scholar 

  16. L. Wu, A. Mendoza-Garcia, Q. Li, and S.H. Sun, Organic phase syntheses of magnetic nanoparticles and their applications, Chem. Rev., 116(2016), No. 18, p. 10473.

    Article  CAS  Google Scholar 

  17. S.Q. Gu, Z.Q. Xu, Y.G. Ren, Z.F. Chai, and Y.X. Zhang, Effect of lignite semi-coke on lignite microwave upgrade and its slurryability, Energy Sources Part A, 2019. DOI: https://doi.org/10.1080/15567036.2019.1673852

  18. P.Q. Wang, C.A. Wang, C.W. Wang, et al., Synergistic effects in rapid co-pyrolysis of semi-coke and coal at high temperature, Fuel, 282(2020), art. No. 118795.

  19. B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Synthesis and microwave absorption properties of Fe-loaded fly ash-based ceramic composites, ACS Appl. Electron. Mater., 2(2020), No. 10, p. 3307.

    Article  CAS  Google Scholar 

  20. B.S. Zhu, Y.Y. Li, Y.M. Tian, et al., Rational design of FeCo/C/FA by recycling of fly ash for electromagnetic pollution, Colloids Surf. A, 627(2021), art. No. 127127.

  21. G.M. Li, L.T. Mao, B.S. Zhu, et al., Novel ceramic-based microwave absorbents derived from gangue, J. Mater. Chem. C, 8(2020), No. 40, p. 14238.

    Article  CAS  Google Scholar 

  22. L. Wang, B. Wen, H.B. Yang, Y. Qiu, and N.R. He, Hierarchical nest-like structure of Co/Fe MOF derived CoFe@C composite as wide-bandwidth microwave absorber, Composites Part A, 135(2020), art. No. 105958.

  23. S.F. Yuan, X. Qu, R. Zhang, and J.C. Bi, Effect of calcium additive on product yields in hydrogasification of nickel-loaded Chinese sub-bituminous coal, Fuel, 147(2015), p. 133.

    Article  CAS  Google Scholar 

  24. S.F. Yuan, N. Zhang, X. Qu, J.C. Bi, Q.E. Cao, and J.L. Wang, Promoted catalysis of calcium on the hydrogasification reactivity of iron-loaded subbituminous coal, Fuel, 200(2017), p. 153.

    Article  CAS  Google Scholar 

  25. D.D. Zhu, Y. Cheng, B. Xue, Y.S. Jiang, and C.D. Wei, Coal gasification fine slag as a low-cost adsorbent for adsorption and desorption of humic acid, Silicon, 12(2020), No. 7, p. 1547.

    Article  CAS  Google Scholar 

  26. N.J. Wagner, R.H. Matjie, J.H. Slaghuis, and J.H.P. van Heerden, Characterization of unburned carbon present in coarse gasification ash, Fuel, 87(2008), No. 6, p. 683.

    Article  CAS  Google Scholar 

  27. F.Y. Wang, Y.Q. Sun, D.R. Li, et al., Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning, Carbon, 134(2018), p. 264.

    Article  CAS  Google Scholar 

  28. Y. Yuan, S.C. Wei, Y. Liang, et al., Solvothermal assisted synthesis of CoFe2O4/CNTs nanocomposite and their enhanced microwave absorbing properties, J. Alloys Compd., 867(2021), art. No. 159040.

  29. Z.L. Zhang, Y.Y. Lv, X.Q. Chen, et al., Porous flower-like Ni/C composites derived from MOFs toward high-performance electromagnetic wave absorption, J. Magn. Magn. Mater., 487(2019), art. No. 165334.

  30. F. Mederos-Henry, J. Mahin, B.P. Pichon, et al., Highly efficient wideband microwave absorbers based on zero-valent Fe@γ−Fe2O3 and Fe/co/Ni carbon-protected alloy nanoparticles supported on reduced graphene oxide, Nanomaterials, 9(2019), No. 9, art. No. 1196.

  31. Y.C. Du, W.W. Liu, R. Qiang, et al., Shell thickness-dependent microwave absorption of core-shell Fe3O4@C composites, ACS Appl. Mater. Interfaces, 6(2014), No. 15, p. 12997.

    Article  CAS  Google Scholar 

  32. L.L. Deng, J.B. Zhang, and R.W. Shu, Fabrication of three-dimensional nitrogen-doped reduced graphene oxide/tin oxide composite aerogels as high-performance electromagnetic wave absorbers, J. Colloid Interface Sci., 602(2021), p. 282.

    Article  CAS  Google Scholar 

  33. R. C. Che, L.M. Peng, X.F. Duan, Q. Chen, and X.L. Liang, Microwave absorption enhancement and complex permittivity and permeability of Fe encapsulated within carbon nanotubes, Adv. Mater., 16(2004), No. 5, p. 401.

    Article  CAS  Google Scholar 

  34. M.Q. Ning, J.B. Li, B.Y. Kuang, et al., One-step fabrication of N-doped CNTs encapsulating M nanoparticles (M = Fe, Co, Ni) for efficient microwave absorption, Appl. Surf. Sci., 447(2018), p. 244.

    Article  CAS  Google Scholar 

  35. F. Wang, W.H. Gu, J.B. Chen, et al., The point defect and electronic structure of K doped LaCo0.9Fe0.1O3 perovskite with enhanced microwave absorbing ability, Nano Res., 15(2022), No. 4, p. 3720.

    Article  CAS  Google Scholar 

  36. H. Huang, Y. Gao, C.F. Fang, et al., Spray granulation of Fe and C nanoparticles and their impedance match for microwave absorption, J. Mater. Sci. Technol., 34(2018), No. 3, p. 496.

    Article  CAS  Google Scholar 

  37. R. Qiang, Y.C. Du, H.T. Zhao, et al., Metal organic framework-derived Fe/C nanocubes toward efficient microwave absorption, J. Mater. Chem. A, 3(2015), No. 25, p. 13426.

    Article  CAS  Google Scholar 

  38. G.H. He, Y.P. Duan, and H.F. Pang, Microwave absorption of crystalline Fe/MnO@C nanocapsules embedded in amorphous carbon, Nano-Micro Lett., 12(2020), No. 1, art. No. 57.

  39. Y. Liu, J. Lai, and J.F. Shi, Effects of the deposition temperature on the microwave-absorption performance of Fe/CNT composites, New Carbon Mater., 35(2020), No. 4, p. 428.

    Article  CAS  Google Scholar 

  40. Y.R. Feng, X. Guo, H.Y. Gong, Y.J. Zhang, and X. Lin, Enhanced electromagnetic microwave absorption of Fe/C/SiCN composite ceramics targeting in integrated structure and function, Ceram. Int., 47(2021), No. 3, p. 3842.

    Article  CAS  Google Scholar 

  41. P.G. Yang, M. Yu, J. Fu, and L.R. Wang, Synthesis and microwave absorption properties of hierarchical Fe micro-sphere assembly by nano-plates, J. Alloys Compd., 721(2017), p. 449.

    Article  CAS  Google Scholar 

  42. X.F. Zhang, Y. Rao, J.J. Guo, and G.W. Qin, Multiple-phase carbon-coated FeSn2/Sn nanocomposites for high-frequency microwave absorption, Carbon, 96(2016), p. 972.

    Article  CAS  Google Scholar 

  43. B.S. Zhu, Y.M. Tian, Y.K. Wang, et al., Construction of Ni-loaded ceramic composites for efficient microwave absorption, Appl. Surf. Sci., 538(2021), art. No. 148018.

  44. D.F. Zhang, F.X. Xu, J. Lin, Z.D. Yang, and M. Zhang, Electromagnetic characteristics and microwave absorption properties of carbon-encapsulated cobalt nanoparticles in 2–18-GHz frequency range, Carbon, 80(2014), p. 103.

    Article  CAS  Google Scholar 

  45. F. Gao, Y.Y. Li, L.T. Mao, et al., Facile synthesis of Co/SC microwave absorbents by recycling coal hydrogasification residue, Mater. Lett., 308(2022), art. No. 131168.

  46. D.W. Liu, Y.C. Du, P. Xu, et al., Waxberry-like hierarchical Ni@C microspheres with high-performance microwave absorption, J. Mater. Chem. C, 7(2019), No. 17, p. 5037.

    Article  CAS  Google Scholar 

  47. L.L. Yan, J. Liu, S.C. Zhao, et al., Coaxial multi-interface hollow Ni−Al2O3−ZnO nanowires tailored by atomic layer deposition for selective-frequency absorptions, Nano Res., 10(2017), No. 5, p. 1595.

    Article  CAS  Google Scholar 

  48. F. Wang, W.H. Gu, J.B. Chen, et al., Improved electromagnetic dissipation of Fe doping LaCoO3 toward broadband microwave absorption, J. Mater. Sci. Technol., 105(2022), p. 92.

    Article  Google Scholar 

  49. L. Wang, B. Wen, X.Y. Bai, C. Liu, and H.B. Yang, Facile and green approach to the synthesis of zeolitic imidazolate framework nanosheet-derived 2D Co/C composites for a lightweight and highly efficient microwave absorber, J. Colloid Interface Sci., 540(2019), p. 30.

    Article  CAS  Google Scholar 

  50. X. Yan, X.X. Huang, B. Zhong, et al., Balancing interface polarization strategy for enhancing electromagnetic wave absorption of carbon materials, Chem. Eng. J., 391(2020), art. No. 123538.

  51. K. Sooklal, B.S. Cullum, S.M. Angel, and C.J. Murphy, Photophysical properties of ZnS nanoclusters with spatially localized Mn2+, J. Phys. Chem., 100(1996), No. 11, p. 4551.

    Article  CAS  Google Scholar 

  52. R.X. Zhang, L. Wang, C.Y. Xu, et al., Vortex tuning magnetization configurations in porous Fe3O4 nanotube with wide microwave absorption frequency, Nano Res., 15(2022), No. 7, p. 6743.

    Article  CAS  Google Scholar 

  53. G.H. Pan, J. Zhu, S.L. Ma, G.B. Sun, and X.J. Yang, Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene, ACS Appl. Mater. Interfaces, 5(2013), No. 23, p. 12716.

    Article  CAS  Google Scholar 

  54. S. Xie, X.N. Guo, G.Q. Jin, and X.Y. Guo, Carbon coated Co-SiC nanocomposite with high-performance microwave absorption, Phys. Chem. Chem. Phys., 15(2013), No. 38, p. 16104.

    Article  CAS  Google Scholar 

  55. Y. Huang, J.D. Ji, Y. Chen, et al., Broadband microwave absorption of Fe3O4−BaTiO3 composites enhanced by interfacial polarization and impedance matching, Composites Part B, 163(2019), p. 598.

    Article  CAS  Google Scholar 

  56. F. Wu, Q. Li, Z.H. Liu, et al., Fabrication of binary MOF-derived hybrid nanoflowers via selective assembly and their microwave absorbing properties, Carbon, 182(2021), p. 484.

    Article  CAS  Google Scholar 

  57. Y.H. Wang, X.J. Han, P. Xu, et al., Synthesis of pomegranate-like Mo2C@C nanospheres for highly efficient microwave absorption, Chem. Eng. J., 372(2019), p. 312.

    Article  CAS  Google Scholar 

  58. Z.J. Wang, L.N. Wu, J.G. Zhou, Z.H. Jiang, and B.Z. Shen, Chemoselectivity-induced multiple interfaces in MWCNT/Fe3O4@ZnO heterotrimers for whole X-band microwave absorption, Nanoscale, 6(2014), No. 21, p. 12298.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Nature Science Foundation of China (No. 51802212), the National College Students’ Innovation and Entrepreneurship Training Program (No. 2021465), the Natural Science Foundation of Shanxi Province, China (No. 201801D221119), the Open Foundation of China-Belarus Belt and Road Joint Laboratory on Electromagnetic Environment Effect (Nos. ZBKF2022030802 and ZBKF2022030702), and the Graduate Education Innovation Programs of Taiyuan University of Science and Technology (No. XCX212003).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guomin Li or Guizhen Wang.

Additional information

Conflict of Interest

The authors declare that they have no conflict of interest.

Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, G., Xue, X., Mao, L. et al. Recycling and utilization of coal gasification residues for fabricating Fe/C composites as novel microwave absorbents. Int J Miner Metall Mater 30, 591–599 (2023). https://doi.org/10.1007/s12613-022-2534-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2534-0

Keywords

Navigation