Skip to main content
Log in

Coal Gasification Fine Slag as a Low-Cost Adsorbent for Adsorption and Desorption of Humic Acid

  • Original Paper
  • Published:
Silicon Aims and scope Submit manuscript

Abstract

Coal gasification fine slag (CGFS) is a kind of amorphous silica-alumina solid waste with large surface area and broad pore-size distribution which has the potential to store and release humic acid (HA). In this study, the adsorption capacity of HA onto CGFS tuned by contact time, HA initial concentration, temperature, pH and CGFS dosage was investigated. Experimental results showed that the adsorption kinetics was well described by the pseudo-second-order model and Weber’s intraparticle diffusion model. The adsorption isotherm followed Langmuir monolayer absorption isotherm model with an adsorption capacity (qmax) of 60.67 mg/g (293 K, pH = 7). The thermodynamic parameters indicated that the adsorption was exothermic reaction. In addition, enhanced HA adsorption performance was found at low pH, indicating that electrostatic interaction played an important role between HA and CGFS. Furthermore, desorption and resorption experiment results demonstrated that CGFS had favorable properties for HA-releasing and resorption. The characterization results of CGFS and HA-adsorbed CGFS revealed that hydrogen bonding was one of the adsorption mechanisms. The exploration in our work demonstrated evidently that CGFS is a promising candidate as a suitable medium to store and release HA for soil.

Mechanisms of adsorption and desorption of humic acid by coal gasification fine slag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Zandonadi DB, Canellas LP, Façanha AR (2007) Indolacetic and humic acids induce lateral root development through a concerted plasmalemma and tonoplast H+ pumps activation. Planta 225:1583–1595. https://doi.org/10.1007/s00425-006-0454-2

    Article  CAS  PubMed  Google Scholar 

  2. Karakurt Y, Unlu H, Unlu H, Padem H (2009) The influence of foliar and soil fertilization of humic acid on yield and quality of pepper. Acta Agriculturae Scandinavica, Section B - Plant Soil Sci 59:233–237. https://doi.org/10.1080/09064710802022952

  3. David PP, Nelson PV, Sanders DC (1994) A humic acid improves growth of tomato seedling in solution culture. J Plant Nutr 17:173–184. https://doi.org/10.1080/01904169409364717

    Article  CAS  Google Scholar 

  4. Türkmen Ö, Dursun A, Turan M, Erdinç Ç (2004) Calcium and humic acid affect seed germination, growth, and nutrient content of tomato ( Lycopersicon esculentum L .) seedlings under saline soil conditions. Acta Agriculturae Scandinavica, Section B - Soil Plant Sci 54:168–174. https://doi.org/10.1080/09064710310022014

  5. Arancon NQ, Edwards CA, Lee S, Byrne R (2006) Effects of humic acids from vermicomposts on plant growth. Eur J Soil Biol 42:S65–S69. https://doi.org/10.1016/j.ejsobi.2006.06.004

    Article  CAS  Google Scholar 

  6. Adani F, Genevini P, Zaccheo P, Zocchi G (1998) The effect of commercial humic acid on tomato plant growth and mineral nutrition. J Plant Nutr 21:561–575. https://doi.org/10.1080/01904169809365424

    Article  CAS  Google Scholar 

  7. Wang XJ, Wang ZQ, Li SG (1995) The effect of humic acids on the availability of phosphorus fertilizers in alkaline soils. Soil Use Manag 11:99–102. https://doi.org/10.1111/j.1475-2743.1995.tb00504.x

    Article  CAS  Google Scholar 

  8. Ni B, Liu M, Lü S et al (2010) Multifunctional slow-release organic−inorganic compound fertilizer. J Agric Food Chem 58:12373–12378. https://doi.org/10.1021/jf1029306

    Article  CAS  PubMed  Google Scholar 

  9. Jarosiewicz A, Tomaszewska M (2003) Controlled-release NPK fertilizer encapsulated by polymeric membranes. J Agric Food Chem 51:413–417. https://doi.org/10.1021/jf020800o

    Article  CAS  PubMed  Google Scholar 

  10. Ibrahim AA, Jibril BY (2005) Controlled release of paraffin wax/rosin-coated fertilizers. Ind Eng Chem Res 44:2288–2291. https://doi.org/10.1021/ie048853d

    Article  CAS  Google Scholar 

  11. Stahl JD, Cameron MD, Haselbach J, Aust SD (2000) Biodegradation of superabsorbent polymers in soil. Environ Sci Pollut Res 7:83–88. https://doi.org/10.1065/espr199912.014

    Article  CAS  Google Scholar 

  12. Zhu D, Xue B, Jiang Y, Wei C (2019) Using chemical experiments and plant uptake to prove the feasibility and stability of coal gasification fine slag as silicon fertilizer. Environ Sci Pollut Res 26:5925–5933. https://doi.org/10.1007/s11356-018-4013-8

    Article  CAS  Google Scholar 

  13. Zhu D, Miao S, Xue B et al (2019) Effect of coal gasification fine slag on the physicochemical properties of soil. Water Air Soil Pollut 230(155). https://doi.org/10.1007/s11270-019-4214-x

  14. Acosta A, Iglesias I, Aineto M et al (2002) Thermal and sintering characterization of IGCC slag. J Therm Anal Calorim 67:249–255. https://doi.org/10.1023/A:1013722905517

    Article  CAS  Google Scholar 

  15. Yin H, Tang Y, Ren Y, Zhang J (2011) Vaporized slag synthesis of ca-α-sialon-SiC composite ceramics. J Chin Ceram Soc:233–238

  16. Baker DE (1973) A new approach to soil testing: II. Ionic equilibria involving H, K, Ca, Mg, Mn, Fe, Cu, Zn, Na, P, and S1. Soil Sci Soc Am J 37:537–541

    Article  CAS  Google Scholar 

  17. Liu S, Zhang W, Tan X et al (2018) Performance of a zeolite modified with N , N -dimethyl dehydroabietylamine oxide (DAAO) for adsorption of humic acid assessed in batch and fixed bed columns. RSC Adv 8:9006–9016. https://doi.org/10.1039/C8RA00166A

    Article  CAS  Google Scholar 

  18. Belachew N, Bekele G (2019) Synergy of magnetite intercalated bentonite for enhanced adsorption of congo red dye. Silicon. https://doi.org/10.1007/s12633-019-00152-2

  19. Karaer H, Kaya İ (2016) Synthesis, characterization of magnetic chitosan/active charcoal composite and using at the adsorption of methylene blue and reactive blue4. Microporous Mesoporous Mater 232:26–38. https://doi.org/10.1016/j.micromeso.2016.06.006

    Article  CAS  Google Scholar 

  20. Liu D, Yuan W, Yuan P et al (2013) Physical activation of diatomite-templated carbons and its effect on the adsorption of methylene blue (MB). Appl Surf Sci 282:838–843. https://doi.org/10.1016/j.apsusc.2013.06.067

    Article  CAS  Google Scholar 

  21. Foo KY, Hameed BH (2010) Insights into the modeling of adsorption isotherm systems. Chem Eng J 156:2–10. https://doi.org/10.1016/j.cej.2009.09.013

    Article  CAS  Google Scholar 

  22. Talavera-Pech WA, Ávila-Ortega A, Pacheco-Catalán D et al (2019) Effect of functionalization synthesis type of amino-MCM-41 mesoporous silica nanoparticles on its RB5 adsorption capacity and kinetics. Silicon 11:1547–1555. https://doi.org/10.1007/s12633-018-9975-0

    Article  CAS  Google Scholar 

  23. Abukhadra MR, Mohamed AS (2019) Adsorption removal of safranin dye contaminants from water using various types of natural zeolite. Silicon 11:1635–1647. https://doi.org/10.1007/s12633-018-9980-3

    Article  CAS  Google Scholar 

  24. Guyo U, Makawa T, Moyo M et al (2015) Application of response surface methodology for Cd(II)adsorption on maize tassel-magnetite nanohybrid adsorbent. J Environ Chem Eng 3:2472–2483. https://doi.org/10.1016/j.jece.2015.09.006

  25. Guyo U, Sibanda K, Sebata E et al (2016) Removal of nickel(II) from aqueous solution by Vigna unguiculata (cowpea) pods biomass. Water Sci Technol 73:2301–2310. https://doi.org/10.2166/wst.2016.012

    Article  CAS  PubMed  Google Scholar 

  26. Gómez I, Rodríguez-Morgado B, Parrado J et al (2014) Behavior of oxyfluorfen in soils amended with different sources of organic matter. Effects on soil biology. J Hazard Mater 273:207–214. https://doi.org/10.1016/j.jhazmat.2014.03.051

    Article  CAS  PubMed  Google Scholar 

  27. Silva S, Baffi C, Spalla S et al (2010) Method for the determination of CEC and exchangeable bases in calcareous soils. Agrochimica 54:103–114

    CAS  Google Scholar 

  28. Mustafa S, Dilara B, Nargis K et al (2002) Surface properties of the mixed oxides of iron and silica. Colloids Surf A Physicochem Eng Asp 205:273–282. https://doi.org/10.1016/S0927-7757(02)00025-0

    Article  CAS  Google Scholar 

  29. Liu S, Lim M, Amal R (2014) TiO2-coated natural zeolite: rapid humic acid adsorption and effective photocatalytic regeneration. Chem Eng Sci 105:46–52. https://doi.org/10.1016/j.ces.2013.10.041

    Article  CAS  Google Scholar 

  30. Guyo U, Moyo M (2017) Cowpea pod (Vigna unguiculata) biomass as a low-cost biosorbent for removal of Pb(II) ions from aqueous solution. Environ Monit Assess 189(47). https://doi.org/10.1007/s10661-016-5728-y

  31. Chang M-Y, Juang R-S (2004) Adsorption of tannic acid, humic acid, and dyes from water using the composite of chitosan and activated clay. J Colloid Interface Sci 278:18–25. https://doi.org/10.1016/j.jcis.2004.05.029

    Article  CAS  PubMed  Google Scholar 

  32. Wang S, Zhu ZH (2007) Humic acid adsorption on fly ash and its derived unburned carbon. J Colloid Interface Sci 315:41–46. https://doi.org/10.1016/j.jcis.2007.06.034

    Article  CAS  PubMed  Google Scholar 

  33. Moussavi G, Talebi S, Farrokhi M, Sabouti RM (2011) The investigation of mechanism, kinetic and isotherm of ammonia and humic acid co-adsorption onto natural zeolite. Chem Eng J 171:1159–1169. https://doi.org/10.1016/j.cej.2011.05.016

    Article  CAS  Google Scholar 

  34. Derakhshani E, Naghizadeh A (2018) Optimization of humic acid removal by adsorption onto bentonite and montmorillonite nanoparticles. J Mol Liq 259:76–81. https://doi.org/10.1016/j.molliq.2018.03.014

    Article  CAS  Google Scholar 

  35. Deng S, Bai R (2004) Adsorption and desorption of humic acid on aminated polyacrylonitrile fibers. J Colloid Interface Sci 280:36–43. https://doi.org/10.1016/j.jcis.2004.07.007

    Article  CAS  PubMed  Google Scholar 

  36. Ritchie JD, Perdue EM (2003) Proton-binding study of standard and reference fulvic acids, humic acids, and natural organic matter. Geochim Cosmochim Acta 67:85–96. https://doi.org/10.1016/S0016-7037(02)01044-X

    Article  CAS  Google Scholar 

  37. Liang L, Luo L, Zhang S (2011) Adsorption and desorption of humic and fulvic acids on SiO2 particles at nano- and micro-scales. Colloids Surf A Physicochem Eng Asp 384:126–130. https://doi.org/10.1016/j.colsurfa.2011.03.045

    Article  CAS  Google Scholar 

  38. Al-Essa K, Khalili F Adsorption of humic acid onto Jordanian kaolinite clay: effects of humic acid concentration, pH, and temperature. Sci J Chem:10

  39. Wang M, Liao L, Zhang X, Li Z (2012) Adsorption of low concentration humic acid from water by palygorskite. Appl Clay Sci 67–68:164–168. https://doi.org/10.1016/j.clay.2011.09.012

    Article  CAS  Google Scholar 

  40. Imyim A, Prapalimrungsi E (2010) Humic acids removal from water by aminopropyl functionalized rice husk ash. J Hazard Mater 184:775–781. https://doi.org/10.1016/j.jhazmat.2010.08.108

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We acknowledged the financial supports by National Natural Science Foundation of China (51874145), and the Province/Jilin University co-construction project – funds for new materials – (SXGJSF2017-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cundi Wei.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, D., Cheng, Y., Xue, B. et al. Coal Gasification Fine Slag as a Low-Cost Adsorbent for Adsorption and Desorption of Humic Acid. Silicon 12, 1547–1556 (2020). https://doi.org/10.1007/s12633-019-00250-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12633-019-00250-1

Keywords

Navigation