Skip to main content

Advertisement

Log in

Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Although Zn metal is an ideal anode candidate for aqueous batteries owing to its high theoretical capacity, lower cost, and safety, its service life and efficiency are damaged by severe hydrogen evolution reaction, self-corrosion, and dendrite growth. Herein, a thickness-controlled ZnS passivation layer was fabricated on the Zn metal surface to obtain Zn@ZnS electrode through oxidation—orientation sulfuration by the liquid- and vapor-phase hydrothermal processes. Benefiting from the chemical inertness of the ZnS interphase, the as-prepared Zn@ZnS electrode presents an excellent anti-corrosion and undesirable hydrogen evolution reaction. Meanwhile, the thickness-optimized ZnS layer with an unbalanced charge distribution represses dendrite growth by guiding Zn plating/stripping, leading to long service life. Consequently, the Zn@ZnS presented 300 cycles in the symmetric cells with a 42 mV overpotential, 200 cycles in half cells with a 78 mV overpotential, and superb rate performance in Zn∥NH4V4O10 full cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X.H. Qin, Y.H. Du, P.C. Zhang, X.Y. Wang, Q.Q. Lu, A.K. Yang, and J.C. Sun, Layered barium vanadate nanobelts for high-performance aqueous zinc-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1684.

    Article  CAS  Google Scholar 

  2. J.Y. Kim, G.C. Liu, G.Y. Shim, H. Kim, and J.K. Lee, Functionalized Zn@ZnO hexagonal pyramid array for dendrite-free and ultrastable zinc metal anodes, Adv. Funct. Mater., 30(2020), No. 36, art. No. 2004210.

  3. M.J. Wu, G.X. Zhang, H.M. Yang, X.H. Liu, M. Dubois, M.A. Gauthier, and S.H. Sun, Aqueous Zn-based rechargeable batteries: Recent progress and future perspectives, InfoMat, (2021). DOI: https://doi.org/10.1002/inf2.12265

  4. Y.L. Heng, Z.Y. Gu, J.Z. Guo, and X.L. Wu, Research progresses on vanadium-based cathode materials for aqueous zinc-ion batteries, Acta Phys. Chim. Sin., 37(2020), No. 3, p. art. No. 2005013.

  5. R.E.A. Ardhi, G.C. Liu, and J.K. Lee, Metal—semiconductor ohmic and Schottky contact interfaces for stable Li-metal electrodes, ACS Energy Lett., (2021), p. 1432.

  6. H.C. Tao, L.Y. Xiong, S.C. Zhu, X.L. Yang, and L.L. Zhang, Flexible binder-free reduced graphene oxide wrapped Si/carbon fibers paper anode for high-performance lithium ion batteries, Int. J. Hydrogen Energy, 41(2016), No. 46, p. 21268.

    Article  CAS  Google Scholar 

  7. H.C. Tao, S.C. Zhu, L.Y. Xiong, L.L. Zhang, and X.L. Yang, Reduced graphene oxide wrapped Si/C assembled on 3D N-doped carbon foam as binder-free anode for enhanced lithium storage, ChemistrySelect, 2(2017), No. 9, p. 2832.

    Article  CAS  Google Scholar 

  8. H.C. Tao, L.Y. Xiong, S.L. Du, Y.Q. Zhang, X.L. Yang, and L.L. Zhang, Interwoven N and P dual-doped hollow carbon fibers/graphitic carbon nitride: An ultrahigh capacity and rate anode for Li and Na ion batteries, Carbon, 122(2017), p. 54.

    Article  CAS  Google Scholar 

  9. F.H. Chen, Y.W. Wu, H.H. Zhang, Z.T. Long, X.X. Lin, M.Z. Chen, Q. Chen, Y.F. Luo, S.L. Chou, and R.H. Zeng, The modulation of the discharge plateau of benzoquinone for sodium-ion batteries, Int. J. Miner. Metall. Mater., 28(2021), No. 10, p. 1675.

    Article  CAS  Google Scholar 

  10. H. Fu, Z.W. Xu, R.Z. Li, W.W. Guan, K. Yao, J.F. Huang, J. Yang, and X.T. Shen, Network carbon with macropores from apple pomace for stable and high areal capacity of sodium storage, ACS Sustainable Chem. Eng., 6(2018), No. 11, p. 14751.

    Article  CAS  Google Scholar 

  11. Y. Han, S.Y. Liu, L. Cui, L. Xu, J. Xie, X.K. Xia, W.K. Hao, B. Wang, H. Li, and J. Gao, Graphene-immobilized flower-like Ni3S2 nanoflakes as a stable binder-free anode material for sodium-ion batteries, Int. J. Miner. Metall. Mater., 25(2018), No. 1, p. 88.

    Article  CAS  Google Scholar 

  12. M. Yang, Q.L. Ning, C.Y. Fan, and X.L. Wu, Large-scale Ni-MOF derived Ni3S2 nanocrystals embedded in N-doped porous carbon nanoparticles for high-rate Na+ storage, Chin. Chem. Lett., 32(2021), No. 2, p. 895.

    Article  CAS  Google Scholar 

  13. L. Zhu, X.X. Yang, Y.H. Xiang, P. Kong, and X.W. Wu, Neurons-system-like structured SnS2/CNTs composite for high-performance sodium-ion battery anode, Rare Met., 40(2021), No. 6, p. 1383.

    Article  CAS  Google Scholar 

  14. D.H. Liu, W.H. Li, Y.P. Zheng, Z. Cui, X. Yan, D.S. Liu, J.W. Wang, Y. Zhang, H.Y. Lü, F.Y. Bai, J.Z. Guo, and X.L. Wu, In situ encapsulating α-MnS into N, S-codoped nanotube-like carbon as advanced anode material: α → β phase transition promoted cycling stability and superior Li/Na-storage performance in half/full cells, Adv. Mater., 30(2018), No. 21, art. No. 1706317.

  15. W.W. Han, G.C. Liu, W. Seo, H. Lee, H.Q. Chu, and W. Yang, Nitrogen-doped chain-like carbon nanospheres with tunable interlayer distance for superior pseudocapacitance-dominated zinc- and potassium-ion storage, Carbon, 184(2021), p. 534.

    Article  CAS  Google Scholar 

  16. L. Chen, J.L. Bao, X. Dong, D.G. Truhlar, Y. Wang, C. Wang, and Y. Xia, Aqueous Mg-ion battery based on polyimide anode and Prussian blue cathode, ACS Energy Lett., 2(2017), No. 5, p. 1115.

    Article  CAS  Google Scholar 

  17. X.T. Zhang, J.X. Li, D.Y. Liu, M.K. Liu, T.S. Zhou, K.W. Qi, L. Shi, Y.C. Zhu, and Y.T. Qian, Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer, Energy Environ. Sci., 14(2021), No. 5, p. 3120.

    Article  CAS  Google Scholar 

  18. J. Cui, X.Y. Liu, Y.H. Xie, K. Wu, Y.Q. Wang, Y.Y. Liu, J.J. Zhang, J. Yi, and Y.Y. Xia, Improved electrochemical reversibility of Zn plating/stripping: A promising approach to suppress water-induced issues through the formation of H-bonding, Mater. Today Energy, 18(2020), art. No. 100563.

  19. R.Z. Qin, Y.T. Wang, M.Z. Zhang, Y. Wang, S.X. Ding, A.Y. Song, H.C. Yi, L.Y. Yang, Y.L. Song, Y.H. Cui, J. Liu, Z.Q. Wang, S.N. Li, Q.H. Zhao, and F. Pan, Tuning Zn2+ coordination environment to suppress dendrite formation for high-performance Zn-ion batteries, Nano Energy, 80(2021), art. No. 105478.

  20. J.L. Cong, X. Shen, Z.P. Wen, X. Wang, L.Q. Peng, J. Zeng, and J.B. Zhao, Ultra-stable and highly reversible aqueous zinc metal anodes with high preferred orientation deposition achieved by a polyanionic hydrogel electrolyte, Energy Storage Mater., 35(2021), p. 586.

    Article  Google Scholar 

  21. Q. Zhang, J.Y. Luan, L. Fu, S.G. Wu, Y.G. Tang, X.B. Ji, and H.Y. Wang, The three-dimensional dendrite-free zinc anode on a copper mesh with a zinc-oriented polyacrylamide electrolyte additive, Angew. Chem. Int. Ed Engl., 58(2019), No. 44, p. 15841.

    Article  Google Scholar 

  22. J.Q. Huang, X.W. Chi, Q. Han, Y.Z. Liu, Y.X. Du, J.H. Yang, and Y. Liu, Thickening and homogenizing aqueous electrolyte towards highly efficient and stable Zn metal batteries, J. Electrochem. Soc., 166(2019), No. 6, p. A1211.

    Article  CAS  Google Scholar 

  23. L.S. Cao, D. Li, E.Y. Hu, J.J. Xu, T. Deng, L. Ma, Y. Wang, X.Q. Yang, and C.S. Wang, Solvation structure design for aqueous Zn metal batteries, J. Am. Chem. Soc., 142(2020), No. 51, p. 21404.

    Article  CAS  Google Scholar 

  24. J.H. Zhou, M. Xie, F. Wu, Y. Mei, Y.T. Hao, L. Li, and R.J. Chen, Encapsulation of metallic Zn in a hybrid MXene/graphene aerogel as a stable Zn anode for foldable Zn-ion batteries, Adv. Mater., 34(2022), No. 1, art. No. 2106897.

  25. L.S. Cao, D. Li, T. Pollard, T. Deng, B. Zhang, C.Y. Yang, L. Chen, J. Vatamanu, E.Y. Hu, M.J. Hourwitz, L. Ma, M. Ding, Q. Li, S. Hou, K. Gaskell, J.T. Fourkas, X.Q. Yang, K. Xu, O. Borodin, and C.S. Wang, Fluorinated interphase enables reversible aqueous zinc battery chemistries, Nat. Nanotechnol., 16(2021), No. 8, p. 902.

    Article  CAS  Google Scholar 

  26. L.T. Ma, S.M. Chen, N. Li, Z.X. Liu, Z.J. Tang, J.A. Zapien, S.M. Chen, J. Fan, and C.Y. Zhi, Hydrogen-free and dendrite-free all-solid-state Zn-ion batteries, Adv. Mater., 32(2020), No. 14, art. No. e1908121.

  27. Y.Z. Chu, S. Zhang, S. Wu, Z.L. Hu, G.L. Cui, and J.Y. Luo, In situ built interphase with high interface energy and fast kinetics for high performance Zn metal anodes, Energy Environ. Sci., 14(2021), No. 6, p. 3609.

    Article  CAS  Google Scholar 

  28. H. Jia, Z.Q. Wang, B. Tawiah, Y.D. Wang, C.Y. Chan, B. Fei, and F. Pan, Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries, Nano Energy, 70(2020), art. No. 104523.

  29. M. Song, H. Tan, D.L. Chao, and H.J. Fan, Recent advances in Zn-ion batteries, Adv. Funct. Mater., 28(2018), No. 41, art. No. 1802564.

  30. L.E. Blanc, D. Kundu, and L.F. Nazar, Scientific challenges for the implementation of Zn-ion batteries, Joule, 4(2020), No. 4, p. 771.

    Article  CAS  Google Scholar 

  31. Z.M. Zhao, J.W. Zhao, Z.L. Hu, J.D. Li, J.J. Li, Y.J. Zhang, C. Wang, and G.L. Cui, Long-life and deeply rechargeable aqueous Zn anodes enabled by a multifunctional brightener-inspired interphase, Energy Environ. Sci., 12(2019), No. 6, p. 1938.

    Article  CAS  Google Scholar 

  32. L.T. Ma, Q. Li, Y.R. Ying, F.X. Ma, S.M. Chen, Y.Y. Li, H.T. Huang, and C.Y. Zhi, Toward practical high-areal-capacity aqueous zinc-metal batteries: Quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes, Adv. Mater., 33(2021), No. 12, art. No. 2007406.

  33. X.S. Xie, S.Q. Liang, J.W. Gao, S. Guo, J.B. Guo, C. Wang, G.Y. Xu, X.W. Wu, G. Chen, and J. Zhou, Manipulating the ion-transfer kinetics and interface stability for high-performance zinc metal anodes, Energy Environ. Sci., 13(2020), No. 2, p. 503.

    Article  CAS  Google Scholar 

  34. J. Shin, J. Lee, Y. Kim, Y. Park, M. Kim, and J.W. Choi, Highly reversible, grain-directed zinc deposition in aqueous zinc ion batteries, Adv. Energy Mater., 11(2021), No. 39, art. No. 2100676.

  35. H. Shokrollahi, Magnetic properties and densification of Manganese—zinc soft ferrites (Mn1−xZnxFe2O4) doped with low melting point oxides, J. Magn. Magn. Mater., 320(2008), No. 3–4, p. 463.

    Article  CAS  Google Scholar 

  36. L. Xiao, D.D. Mei, M.L. Cao, D.Y. Qu, and B.H. Deng, Effects of structural patterns and degree of crystallinity on the performance of nanostructured ZnO as anode material for lithium-ion batteries, J. Alloys Compd., 627(2015), p. 455.

    Article  CAS  Google Scholar 

  37. S.F. Ye, L.F. Wang, F.F. Liu, P.C. Shi, H.Y. Wang, X.J. Wu, and Y. Yu, g-C3N4 derivative artificial organic/inorganic composite solid electrolyte interphase layer for stable lithium metal anode, Adv. Energy Mater., 10(2020), No. 44, art. No. 2002647.

  38. Z.Y. Cao, P.Y. Zhuang, X. Zhang, M.X. Ye, J.F. Shen, and P.M. Ajayan, Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries, Adv. Energy Mater., 10(2020), No. 30, art. No. 2001599.

  39. M. Eom, S. Son, C. Park, S. Noh, W.T. Nichols, and D. Shin, High performance all-solid-state lithium—sulfur battery using a Li2S—VGCF nanocomposite, Electrochim. Acta, 230(2017), p. 279.

    Article  CAS  Google Scholar 

  40. J.N. Hao, B. Li, X.L. Li, X.H. Zeng, S.L. Zhang, F.H. Yang, S.L. Liu, D. Li, C. Wu, and Z.P. Guo, An in-depth study of Zn metal surface chemistry for advanced aqueous Zn-ion batteries, Adv. Mater., 32(2020), No. 34, art. No. 2003021.

  41. X.Y. Tong, X.W. Ou, N.Z. Wu, H.Y. Wang, J. Li, and Y.B. Tang, High oxidation potential ≈6.0 V of concentrated electrolyte toward high-performance dual-ion battery, Adv. Energy Mater., 11(2021), No. 25, art. No. 2100151.

  42. J.Y. Kim, G.C. Liu, R.E.A. Ardhi, J. Park, H. Kim, and J.K. Lee, Stable Zn metal anodes with limited Zn-doping in MgF2 interphase for fast and uniformly ionic flux, Nano-Micro Lett., 14(2022), No. 1, art. No. 46.

Download references

Acknowledgements

This work was financially supported by the National Research Foundation funded by the government of the Republic of Korea (Nos. 2020R1I1A1A01072996 and 2021K 2A9A2A06044652), and the National Natural Science Foundation of China (Nos. 52111540265 and 51874272).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Woochul Yang or Guicheng Liu.

Additional information

Conflict of Interest

The authors declare no conflict of interest.

Supporting information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiong, L., Fu, H., Han, W. et al. Robust ZnS interphase for stable Zn metal anode of high-performance aqueous secondary batteries. Int J Miner Metall Mater 29, 1053–1060 (2022). https://doi.org/10.1007/s12613-022-2454-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-022-2454-z

Keywords

Navigation