Skip to main content
Log in

Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries

  • Published:
International Journal of Minerals, Metallurgy and Materials Aims and scope Submit manuscript

Abstract

Antimony sulfide (Sb2S3) is a promising anode for lithium-ion batteries due to its high capacity and vast reserves. However, the low electronic conductivity and severe volume change during cycling hinder its commercialization. Herein our work, a three-dimensional (3D) Sb2S3 thin film anode was fabricated via a simple vapor transport deposition system by using natural stibnite as raw material and stainless steel fiber-foil (SSF) as 3D current collector, and a carbon nanotube interphase was introduced onto the film surface by a simple dropping-heating process to promote the electrochemical performances. This 3D structure can greatly improve the initial coulombic efficiency to a record of 86.6% and high reversible rate capacity of 760.8 mAh·g−1 at 10 C. With carbon nanotubes interphase modified, the Sb2S3 anode cycled extremely stable with high capacity retention of 94.7% after 160 cycles. This work sheds light on the economical preparation and performance optimization of Sb2S3-based anodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.L. Hao, J. Li, S. Park, S. Moura, and C. Dames, Efficient thermal management of Li-ion batteries with a passive interfacial thermal regulator based on a shape memory alloy, Nat. Energy, 3(2018), No. 10, p. 899.

    Article  CAS  Google Scholar 

  2. Z.D. Lei, Q.S. Yang, Y. Xu, S.Y. Guo, W.W. Sun, H. Liu, L.P. Lv, Y. Zhang, and Y. Wang, Boosting lithium storage in covalent organic framework via activation of 14-electron redox chemistry, Nat. Commun., 9(2018), art. No. 576.

  3. M. Ko, S. Chae, J. Ma, N. Kim, H.W. Lee, Y. Cui, and J. Cho, Scalable synthesis of silicon-nanolayer-embedded graphite for high-energy lithium-ion batteries, Nat. Energy, 1(2016), art. No. 16113.

  4. H.S. Hou, M.J. Jing, Z.D. Huang, Y.C. Yang, Y. Zhang, J. Chen, Z.B. Wu, and X.B. Ji, One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries, ACS Appl. Mater. Interfaces, 7(2015), No. 34, p. 19362.

    Article  CAS  Google Scholar 

  5. S.H. Dong, C.X. Li, X.L. Ge, Z.Q. Li, X.G. Miao, and L.W. Yin, ZnS-Sb2S3@C core-double shell polyhedron structure derived from metal-organic framework as anodes for high performance sodium ion batteries, ACS Nano, 11(2017), No. 6, p. 6474.

    Article  CAS  Google Scholar 

  6. S.S. Yao, J. Cui, J.Q. Huang, Z.H. Lu, Y. Deng, W.G. Chong, J.X. Wu, M. Ihsan Ul Haq, F. Ciucci, and J.K. Kim, Novel 2D Sb2S3 nanosheet/CNT coupling layer for exceptional polysulfide recycling performance, Adv. Energy Mater., 8(2018), No. 24, art. No. 1800710.

  7. W. Luo, X. Ao, Z.S. Li, L. Lv, J.G. Li, G. Hong, Q.H. Wu, and C.D. Wang, Imbedding ultrafine Sb2S3 nanoparticles in meso-porous carbon sphere for high-performance lithium-ion battery, Electrochim. Acta, 290(2018), p. 185.

    Article  CAS  Google Scholar 

  8. S.S. Yao, J. Cui, Y. Deng, W.G. Chong, J.X. Wu, M. Ihsan-Ul-haq, Y.W. Mai, and J.K. Kim, Ultrathin Sb2S3 nanosheet anodes for exceptional pseudocapacitive contribution to multi-battery charge storage, Energy Storage Mater., 20(2019), p. 36.

    Article  Google Scholar 

  9. P.V. Prikhodchenko, J. Gun, S. Sladkevich, A.A. Mikhaylov, O. Lev, Y.Y. Tay, S.K. Batabyal, and D.Y.W. Yu, Conversion of hydroperoxoantimonate coated graphenes to Sb2S3@Graphene for a superior lithium battery anode, Chem. Mater., 24(2012), No. 24, p. 4750.

    Article  CAS  Google Scholar 

  10. X.Z. Zhou, L.H. Bai, J. Yan, S.H. He, and Z.Q. Lei, Solvothermal synthesis of Sb2S3/C composite nanorods with excellent Li-storage performance, Electrochim. Acta, 108(2013), p. 17.

    Article  CAS  Google Scholar 

  11. D.Y.W. Yu, P.V. Prikhodchenko, C.W. Mason, S.K. Batabyal, J. Gun, S. Sladkevich, A.G. Medvedev, and O. Lev, High-capacity antimony sulphide nanoparticle-decorated graphene composite as anode for sodium-ion batteries, Nat. Commun., 4(2013), art. No. 2922.

  12. A.W. Nemaga, J. Mallet, J. Michel, C. Guery, M. Molinari, and M. Morcrette, All electrochemical process for synthesis of Si coating on TiO2 nanotubes as durable negative electrode material for lithium ion batteries, J. Power Sources, 393(2018), p. 43.

    Article  CAS  Google Scholar 

  13. J.F. Ni, S.D. Fu, Y.F. Yuan, L. Ma, Y. Jiang, L. Li, and J. Lu, Boosting sodium storage in TiO2 nanotube arrays through surface phosphorylation, Adv. Mater., 30(2018), No. 6, art. No. 1704337.

  14. R.W. Mo, D. Rooney, K.N. Sun, and H.Y. Yang, 3D nitrogen-doped graphene foam with encapsulated germanium/nitrogen-doped graphene yolk-shell nanoarchitecture for high-performance flexible Li-ion battery, Nat. Commun., 8(2017), art. No. 13949.

  15. H. Park, J.H. Um, H. Choi, W.S. Yoon, Y.E. Sung, and H. Choe, Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries, Appl. Surf. Sci., 399(2017), p. 132.

    Article  CAS  Google Scholar 

  16. R.J. Zou, Z.Y. Zhang, M.F. Yuen, M.L. Sun, J.Q. Hu, C.S. Lee, and W.J. Zhang, Three-dimensional-networked NiCo2S4 nanosheet array/carbon cloth anodes for high-performance lithium-ion batteries, NPG Asia Mater., 7(2015), No. 6, art. No. e195.

  17. W. Yuan, B.Y. Wang, H. Wu, M.W. Xiang, Q. Wang, H. Liu, Y. Zhang, H.K. Liu, and S.X. Dou, A flexible 3D nitrogen-doped carbon foam@CNTs hybrid hosting TiO2 nanoparticles as free-standing electrode for ultra-long cycling lithium-ion batteries, J. Power Sources, 379(2018), p. 10.

    Article  CAS  Google Scholar 

  18. E. Peled, F. Patolsky, D. Golodnitsky, K. Freedman, G. Davidi, and D. Schneier, Tissue-like silicon nanowires-based three-dimensional anodes for high-capacity lithium ion batteries, Nano Lett., 15(2015), No. 6, p. 3907.

    Article  CAS  Google Scholar 

  19. H.C. Tao, S.C. Zhu, L.Y. Xiong, X.L. Yang, and L.L. Zhang, Three-dimensional carbon-coated SnO2/reduced graphene oxide foam as a binder-free anode for high-performance lithiumion batteries, ChemElectroChem, 3(2016), No. 7, p. 1063.

    Article  CAS  Google Scholar 

  20. Y. Yang, X.J. Fan, G. Casillas, Z.W. Peng, G.D. Ruan, G. Wang, M.J. Yacaman, and J.M. Tour, Three-dimensional nanoporous Fe2O3/Fe3C-graphene heterogeneous thin films for lithium-ion batteries, ACS Nano, 8(2014), No. 4, p. 3939.

    Article  CAS  Google Scholar 

  21. S. Moitzheim, J.E. Balder, R. Ritasalo, S. Ek, P. Poodt, S. Unnikrishnan, S. De Gendt, and P.M. Vereecken, Toward 3D thin-film batteries: Optimal current-collector design and scalable fabrication of TiO2 thin-film electrodes, ACS Appl. Energy Mater., 2(2019), No. 3, p. 1774.

    Article  CAS  Google Scholar 

  22. Q. Wang, Y.Q. Lai, F.Y. Liu, L.X. Jiang, and M. Jia, Amorphous Sb2S3 anodes by reactive radio frequency magnetron sputtering for high-performance lithium-ion half/full cells, Energy Technol., 7(2019), No. 11, art. No. 1900928.

  23. A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, and W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices, Nat. Mater., 4(2005), No. 5, p. 366.

    Article  Google Scholar 

  24. P. Makreski, G. Petruševski, S. Ugarković, and G. Jovanovski, Laser-induced transformation of stibnite (Sb2S3) and other structurally related salts, Vib. Spectrosc., 68(2013), p. 177.

    Article  CAS  Google Scholar 

  25. P. Makreski, G. Jovanovski, B. Minceva-Sukarova, B. Soptrajanov, A. Green, B. Engelen, and I. Grzetic, Vibrational spectra of M3IMIIIS3 type synthetic minerals (MI = Tl or Ag and MIII = As or Sb), Vib. Spectrosc., 35(2004), No. 1–2, p. 59.

    Article  CAS  Google Scholar 

  26. S. Kharbish, E. Libowitzky, and A. Beran, Raman spectra of isolated and interconnected pyramidal XS3 groups (X = Sb, Bi) in stibnite, bismuthinite, kermesite, stephanite and bournonite, Eur. J. Mineral., 21(2009), No. 2, p. 325.

    Article  CAS  Google Scholar 

  27. H. Li, K. Qian, X.Y. Qin, D.Q. Liu, R.Y. Shi, A.H. Ran, C.P. Han, Y.B. He, F.Y. Kang, and B.H. Li, The different Li/Na ion storage mechanisms of nano Sb2O3 anchored on graphene, J. Power Sources, 385(2018), p. 114.

    Article  CAS  Google Scholar 

  28. R. Parize, T. Cossuet, O. Chaix-Pluchery, H. Roussel, E. Appert, and V. Consonni, In situ analysis of the crystallization process of Sb2S3 thin films by Raman scattering and X-ray diffraction, Mater. Des., 121(2017), p. 1.

    Article  CAS  Google Scholar 

  29. Q.H. Nguyen, J.S. Choi, Y.C. Lee, I.T. Kim, and J. Hur, 3D hierarchical structure of MoS2@G-CNT combined with post-film annealing for enhanced lithium-ion storage, J. Ind. Eng. Chem., 69(2019), p. 116.

    Article  CAS  Google Scholar 

  30. Q. Li, G.Z. Zhu, Y.H. Zhao, K. Pei, and R.C. Che, NixM-nyCozO nanowire/CNT composite microspheres with 3D interconnected conductive network structure via spray-drying method: A high-capacity and long-cycle-life anode material for lithium-ion batteries, Small, 15(2019), No. 15, art. No. 1900069.

  31. H.L. Zhang, C.G. Hu, Y. Ding, and Y. Lin, Synthesis of 1D Sb2S3 nanostructures and its application in visible-light-driven photodegradation for MO, J. Alloys Compd., 625(2015), p. 90.

    Article  CAS  Google Scholar 

  32. S.J. Wang, S.S. Liu, X.M. Li, C. Li, R. Zang, Z.M. Man, Y.H. Wu, P.X. Li, and G.X. Wang, SnS2/Sb2S3 heterostructures anchored on reduced graphene oxide nanosheets with superior rate capability for sodium-ion batteries, Chem. Eur. J., 24(2018), No. 15, p. 3873.

    Article  CAS  Google Scholar 

  33. D.Y.W. Yu, H.E. Hoster, and S.K. Batabyal, Bulk antimony sulfide with excellent cycle stability as next-generation anode for lithium-ion batteries, Sci. Rep., 4(2015), No. 1, art. No. 4562.

  34. J.J. Xie, L. Liu, J. Xia, Y. Zhang, M. Li, Y. Ouyang, S. Nie, and X.Y. Wang, Template-free synthesis of Sb2S3 hollow micro-spheres as anode materials for lithium-ion and sodium-ion batteries, Nano-Micro Lett., 10(2018), No. 1, art. No. 12.

  35. Y.C. Dong, S.L. Yang, Z.Y. Zhang, J.M. Lee, and J.A. Zapien, Enhanced electrochemical performance of lithium ion batteries using Sb2S3 nanorods wrapped in graphene nanosheets as anode materials, Nanoscale, 10(2018), No. 7, p. 3159.

    Article  CAS  Google Scholar 

  36. J. Ren, R.P. Ren, and Y.K. Lv, A flexible 3D graphene@CNT@ MoS2 hybrid foam anode for high-performance lithium-ion battery, Chem. Eng. J., 353(2018), p. 419.

    Article  CAS  Google Scholar 

  37. Y.R. Dong, H. Jiang, Z.N. Deng, Y.J. Hu, and C.Z. Li, Synthesis and assembly of three-dimensional MoS2/rGO nanovesicles for high-performance lithium storage, Chem. Eng. J., 350(2018), p. 1066.

    Article  CAS  Google Scholar 

  38. C.R. Zhu, X.H. Xia, J.L. Liu, Z.X. Fan, D.L. Chao, H. Zhang, and H.J. Fan, TiO2 nanotube@SnO2 nanoflake core-branch arrays for lithium-ion battery anode, Nano Energy, 4(2014), p. 105.

    Article  CAS  Google Scholar 

  39. W.J. Tang, X.L. Wang, D. Xie, X.H. Xia, C.D. Gu, and J.P. Tu, Hollow metallic 1T MoS2 arrays grown on carbon cloth: A freestanding electrode for sodium ion batteries, J. Mater. Chem. A, 6(2018), No. 37, p. 18318.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was financially supported by the National Natural Science Foundation of China (No. 51774343).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Jia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Q., Du, Yy., Lai, Yq. et al. Three-dimensional antimony sulfide anode with carbon nanotube interphase modified for lithium-ion batteries. Int J Miner Metall Mater 28, 1629–1635 (2021). https://doi.org/10.1007/s12613-021-2249-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-021-2249-7

Keywords

Navigation