Skip to main content
Log in

Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The evolution of the microstructure, texture, and microhardness of 5754 aluminum alloy subjected to high-temperature plastic deformation under different deformation conditions was studied on the basis of thermal simulations and electron-backscattered diffraction and Vickers microhardness experiments. The results of a misorientation angle study show that an increase in the deformation temperature and strain rate promoted the transformation of low-angle grain boundaries to high-angle grain boundaries, which contributed to dynamic recrys-tallization. The effect of the deformation parameters on the texture and its evolution during the recrystallization process was explored on the basis of the orientation distribution function. The results demonstrate that the deformed samples mainly exhibited the features of type A, B, and B textures. The formation and growth of the recrystallized grains clearly affected the texture evolution. The microhardness results show that the variation of the microhardness was closely related to the temperature, strain rate, and dynamic recrystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.A.J. Taleghani, E.M.R. Navas, M. Salehi, and J.M. Torralba, Hot deformation behaviour and flow stress prediction of 7075 aluminium alloy powder compacts during compression at elevated temperatures, Mater. Sci. Eng. A, 534(2012), p. 624.

    Article  Google Scholar 

  2. J.Y. Park, S.H. Hong, and D.N. Lee, Analysis of deformation and recrystallization textures of shear deformed 1050 aluminum alloy, Mater. Sci. Forum, 408–412(2002), no. 4, p. 1431.

    Article  Google Scholar 

  3. W.C. Liu and J.G. Morris, Effect of initial texture on the re-crystallization texture of cold rolled AA 5182 aluminum alloy, Mater. Sci. Eng. A, 402(2005), No. 1–2, p. 215.

    Article  Google Scholar 

  4. P.P. Bhattacharjee, R.K. Ray, and N. Tsuji, Cold rolling and recrystallization textures of a Ni–5 at.% Walloy, Acta Mater., 57(2009), no. 7, p. 2166.

    Article  Google Scholar 

  5. Q. Liu, D.J. Jensen, and N. Hansen, Effect of grain orientation on deformation structure in cold-rolled polycrystalline aluminium, Acta Mater., 46(1998), no. 16, p. 5819.

    Article  Google Scholar 

  6. O. Engler and J. Hirsch, Texture control by thermomechanical processing of AA6xxx Al–Mg–Si sheet alloys for automotive applications—a review, Mater. Sci. Eng. A, 336(2002), No. 1–2, p. 249.

    Article  Google Scholar 

  7. L.H. Liao, X.F. Zheng, Y.L. Kang, W. Liu, Y. Yan, and Z.Y. Mo, Crystallographic texture and earing behavior analysis for different second cold reductions of double-reduction tinplate, Int. J. Miner. Metall. Mater., 25(2018), no. 6, p. 652.

    Article  Google Scholar 

  8. O. Engler, M. Crumbach, and S. Li, Alloy-dependent rolling texture simulation of aluminium alloys with a grain-interaction model, Acta Mater., 53(2005), no. 8, p. 2241.

    Article  Google Scholar 

  9. H.O. Asbeck and H. Mecking, Influence of friction and geometry of deformation on texture inhomogeneities during rolling of Cu single crystals as an example, Mater. Sci. Eng., 34(1978), no. 2, p. 111.

    Article  Google Scholar 

  10. J.N. Qin, D. Zhang, G.D. Zhang, and J.C. Lee, Effect of temperature on texture formation of 6061 aluminum sheet in equal-channel angular pressing, Mater. Sci. Eng. A., 408(2005), No. 1–2, p. 79.

    Article  Google Scholar 

  11. K. Abib, J.A.M. Balanos, B. Alili, and D. Bradai, On the mi-crostructure and texture of Cu–Cr–Zr alloy after severe plastic deformation by ECAP, Mater. Charact., 112(2016), p. 252.

    Article  Google Scholar 

  12. M. Kuroda and S. Ikawa, Texture optimization of rolled aluminum alloy sheets using a genetic algorithm, Mater. Sci. Eng. A., 385(2004), No. 1–2, p. 235.

    Article  Google Scholar 

  13. Y. Zhang, X.P. Wang, F.T. Kong, L.L. Sun, and Y.Y. Chen, Microstructure, texture and mechanical properties of Ti–43Al–9V–0.2Y alloy hot-rolled at various temperatures, J. Alloys Compd., 777(2019), p. 795.

    Article  Google Scholar 

  14. P. Angerer, E. Neubauer, L.G. Yu, and K.A. Khor, Texture and structure evolution of tantalum powder samples during spark-plasma-sintering (SPS) and conventional hot-pressing, Int. J. Refract. Met. Hard Mater., 25(2007), no. 4, p. 280.

    Article  Google Scholar 

  15. X.M. Duan, D.C. Jia, Z.L. Wu, Z. Tian, Z.H. Yang, S.J. Wang, and Y. Zhou, Effect of sintering pressure on the texture of hot-press sintered hexagonal boron nitride composite ceramics, Scripta Mater., 68(2013), no. 2, p. 104.

    Article  Google Scholar 

  16. J. Luo, W.W. Hu, Q.Q. Jin, H. Yan, and R.S. Chen, Unusual cold rolled texture in an Mg–2.0Zn–0.8Gd sheet, Scripta Mater., 127(2017), p. 146.

    Article  Google Scholar 

  17. R. Singh, R.K. Khatirkar, R.N. Chouhan, and S.G. Sapate, Development of cube recrystallization texture in strip cast AA3004 aluminium alloy, Trans. Indian Inst. Met., 69(2016), no. 10, p. 1833.

    Article  Google Scholar 

  18. H.T. Liu, Z.Y. Liu, Y. Sun, Y.Q. Qiu, C.G. Li, G.M. Cao, B.D. Hong, S.H. Kim, and G.D. Wang, Formation of {001} <510> recrystallization texture and magnetic property in strip casting non-oriented electrical steel, Mater. Lett., 81(2012), p. 65.

    Article  Google Scholar 

  19. V.K. Barnwal, R. Raghavan, A. Tewari, K. Narasimhan, and S.K. Mishra, Effect of microstructure and texture on forming behaviour of AA-6061 aluminium alloy sheet, Mater. Sci. Eng. A., 679(2017), p. 56.

    Article  Google Scholar 

  20. J.Q. Duan, M.Z. Quadir, W. Xu, C. Kong, and M. Ferry, Texture balancing in a fcc/bcc multilayered composite produced by accumulative roll bonding, Acta Mater., 123(2017), p. 11.

    Article  Google Scholar 

  21. H.T. Liu, H.L. Li, H. Wang, Y. Liu, F. Gao, L.Z. An, S.Q. Zhao, Z.Y. Liu, and G.D. Wang, Effects of initial micro-structure and texture on microstructure, texture evolution and magnetic properties of non-oriented electrical steel, J. Magn. Magn. Mater., 406(2016), p. 149.

    Article  Google Scholar 

  22. X.B. Liu, F.B. Qiao, L.J. Guo, and X.E. Qiu, Metallographic structure, mechanical properties, and process parameter optimization of 5A06 joints formed by ultrasonic-assisted refill friction stir spot welding, Int. J. Miner. Metall. Mater., 24(2017), no. 2, p. 164.

    Article  Google Scholar 

  23. J. de Paula Martins, A.L.M. de Carvalho, and A.F. Padilha, Texture analysis of cold rolled and annealed aluminum alloy produced by twin-roll casting, Mater. Res., 15(2012), no. 1, p. 97.

    Article  Google Scholar 

  24. D.Q. Xin, C.X. He, X.H. Gong, H. Wang, L. Meng, G. Ma, P.F. Hou, and W.K. Zhang, Monte Carlo study on abnormal growth of Goss grains in Fe–3%Si steel induced by second-phase particles, Int. J. Miner. Metall. Mater., 23(2016), no. 12, p. 1397.

    Article  Google Scholar 

  25. X.H. Yue, C.F. Liu, H.H. Liu, S.F. Xiao, Z.H. Tang, and T. Tang, Effects of hot compression deformation temperature on the microstructure and properties of Al–Zr–La alloys, Int. J. Miner. Metall. Mater., 25(2018), no. 2, p. 236.

    Article  Google Scholar 

  26. Y.C. Lin, X.Y. Wu, X.M. Chen, J. Chen, D.X. Wen, J.L. Zhang, and L.T. Li, EBSD study of a hot deformed nickel-based superalloy, J. Alloys Compd., 640(2015), p. 101.

    Article  Google Scholar 

  27. K. Huang and R.E. Logé, A review of dynamic recrystalliza-tion phenomena in metallic materials, Mater. Des., 111(2016), p. 548.

    Article  Google Scholar 

  28. P.R. Rios, S. Fulvio Jr, H.R.Z. Sandim, R.L. Plaut, and A.F. Padilha, Nucleation and growth during recrystallization, Mater. Res., 8(2005), no. 3, p. 225.

    Article  Google Scholar 

  29. X. Huang, K. Suzuki, and Y. Chino, Static recrystallization behavior of hot-rolled Mg–Zn–Ce magnesium alloy sheet, J. Alloys Compd., 724(2017), p. 981.

    Article  Google Scholar 

  30. P. Li, X. Wang, K.M. Xue, Y. Tian, and Y.C. Wu, Micro-structure and recrystallization behavior of pure W powder processed by high-pressure torsion, Int. J. Refract. Met. Hard Mater., 54(2016), p. 439.

    Article  Google Scholar 

  31. J.B. Liu, X.H. Liu, W. Liu, Y.W. Zeng, and K.Y. Shu, Microstructure and hardness evolution during isothermal process at 700 degrees C for Fe–24Mn–0.7Si–1.0Al TWIP steel, Mater. Charact., 61(2010), no. 12, p. 1356.

    Article  Google Scholar 

  32. Z.J. Shao, H.P. Liu, X.C. He, B. Zhou, Y. Li, S.Z. Zhang, M.J. Li, and S.J. Li, Microstructure and finite element analysis of hot continuous rolling of doped tungsten rod, Int. J. Miner. Metall. Mater., 26(2019), no. 3, p. 369.

    Article  Google Scholar 

Download references

Acknowledgements

The authors appreciate financial support from the Natural Science Foundation of China (No. 51275533), the State Key Laboratory of High-Performance Complex Manufacturing (No. zzyjkt2013–10B), Central South University, China, and also the portion provided by the Academician Workstation Foundation of Yinhai Aluminum Industry Co., Ltd., Liuz-hou, China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-qing Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Cq., Liu, Jx. & Jia, Xd. Effect of thermal deformation parameters on the microstructure, texture, and microhardness of 5754 aluminum alloy. Int J Miner Metall Mater 26, 1140–1150 (2019). https://doi.org/10.1007/s12613-019-1852-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-019-1852-3

Keywords

Navigation