Skip to main content
Log in

Linking anisotropy with Fe3C distribution in AISI 1045 steel

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

The anisotropy of the microstructure, thermal expansion behavior, corrosion resistance and magnetic properties of AISI 1045 steel was investigated. The distribution of Fe3C lamellae in the investigation plane parallel to the radial directions of molds was observed to differ from that in the investigation plane perpendicular to the radial directions by transmission electron microscopy. The lattice constants a 0 of α-Fe deduced from the XRD patterns of samples prepared using a sand (S)-mold and cut parallel to the radial direction of the mold (S//) and using a metal (M)-mold and cut parallel to the radial direction (M//), the corrosion resistance measured using an electrochemical workstation, and the magnetic permeability obtained by vibrating sample magnetometry also indicated the existence of anisotropy in the tested samples. The anisotropic change of corrosion potential (E corr), pitting potential (E pit) and magnetic permeability (µ) of the samples was observed to depend on the orientation factor F 200 of α-Fe in the measured samples, which is controlled by the distribution of Fe3C lamellae in the eutectoid structure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J.P. Davim and C. Maranhão, A study of plastic strain and plastic strain rate in machining of steel AISI 1045 using FEM analysis, Mater. Des., 30(2009), No. 1, p. 160.

    Article  Google Scholar 

  2. W. Cai, F.N. Meng, X.Y. Gao, and J. Hu, Effect of QPQ nitriding time on wear and corrosion behavior of 45 carbon steel, Appl. Surf. Sci., 261(2012), p. 411.

    Article  Google Scholar 

  3. N. Zhong, X.D. Wang, Z.H. Guo, and Y.H. Rong, Orientation relationships between ferrite and cementite by edge-to-edge matching principle, J. Mater. Sci. Technol., 27(2011), No. 5, p. 475.

    Article  Google Scholar 

  4. M. Caruso and S. Godet, Strain-induced development of very fine ferrite-cementite structures in eutectoid steels, Adv. Eng. Mater., 14(2012), No. 11, p. 981.

    Article  Google Scholar 

  5. P.G. Xu, F. Yin, and K. Nagai, Solidification cooling rate and as-cast textures of low-carbon steel strips, Mater. Sci. Eng. A, 441(2006), No. 1-2, p. 157.

    Article  Google Scholar 

  6. M.R. Bateni, J.A. Szpunar, X. Wang, and D.Y. Li, The effect of wear and corrosion on internal crystalline texture of carbon steel and stainless steel, Wear, 259(2005), No. 1-6, p. 400.

    Article  Google Scholar 

  7. Z.N. Farhat, Contribution of crystallographic texturing to the sliding friction behaviour of fcc and hcp metals, Wear, 250(2001), No. 1-12, p. 401.

    Article  Google Scholar 

  8. J.I. Verdeja, J. Asensio, and J.A. Pero-Sanz, Texture, formability, lamellar tearing and HIC susceptibility of ferritic and low-carbon HSLA steels, Mater. Charact., 50(2003), No. 1, p. 81.

    Article  Google Scholar 

  9. Z.C. Wang, W. Li, Z.H. Guo, Y.H. Rong, and C. Zhang, Simulation of ferrite/cementite interface with Bagaryatsky orientation relationship, J. Shanghai Jiaotong Univ., 39(2005), No. 1, p. 14.

    Google Scholar 

  10. M.X. Zhang and P.M. Kelly, Accurate orientation relationships between ferrite and cementite in pearlite, Scripta Mater., 37(1997), No. 12, p. 2009.

    Article  Google Scholar 

  11. H.J. Xie, X.C. Wu, and Y.A. Min, Influence of chemical composition on phase transformation temperature and thermal expansion coefficient of hot work die steel, J. Iron. Steel. Res. Int., 15(2008), No. 6, p. 56.

    Article  Google Scholar 

  12. I.R. Choi, K.S. Chung, and D.H. Kim, Thermal and mechanical properties of high-strength structural steel HSA800 at elevated temperatures, Mater. Des., 63(2014), p. 544.

    Article  Google Scholar 

  13. J. Guo, S.W. Yang, C.J. Shang, Y. Wang, and X.L. He, Influence of carbon content and microstructure on corrosion behaviour of low alloy steels in a Cl- containing environment, Corros. Sci., 51(2009), No. 2, p. 242.

    Article  Google Scholar 

  14. T.V. Shibaeva, V.K. Laurinavichyute, G.A. Tsirlina, A.M. Arsenkin, and K.V. Grigorovich, The effect of microstructure and non-metallic inclusions on corrosion behavior of low carbon steel in chloride containing solutions, Corros. Sci., 80(2014), p. 299.

    Article  Google Scholar 

  15. O. Kazum, M.B. Kannan, H. Beladi, I. Timokhina, P. Hodgson, and S. Khoddam, Selective dissolution of retained austenite in nanostructured bainitic steels, Adv. Eng. Mater., 16(2014), No. 4, p. 442.

    Article  Google Scholar 

  16. S. Zhang, X.L. Pang, Y.B. Wang, and K.W. Gao, Corrosion behavior of steel with different microstructures under various elastic loading conditions, Corros. Sci., 75(2013), p. 293.

    Article  Google Scholar 

  17. A. Chaudhury, R. Khatirkar, N.N. Viswanathan, V. Singal, A. Ingle, S. Joshi, and I. Samajdar, Low silicon non-grain-oriented electrical steel: linking magnetic properties with metallurgical factors, J. Magn. Magn. Mater., 313(2007), No. 1, p. 21.

    Article  Google Scholar 

  18. M. Gallaugher, N. Brodusch, R. Gauvin, and R.R. Chromik, Magnetic domain structure and crystallographic orientation of electrical steels revealed by a forescatter detector and electron backscatter diffraction, Ultramicroscopy, 142(2014), p. 40.

    Article  Google Scholar 

  19. P. Oxley, J. Goodell, and R. Molt, Magnetic properties of stainless steels at room and cryogenic temperatures, J. Magn. Magn. Mater., 321(2009), No. 14, p. 2107.

    Article  Google Scholar 

  20. P. Ghosh, R.R. Chromik, B. Vashegi, and A.M. Knight, Effect of crystallographic texture on the bulk magnetic properties of non-oriented electrical steels, J. Magn. Magn. Mater., 365(2014), p. 14.

    Article  Google Scholar 

  21. Y. Zhou and G.H. Wu, Materials Analysis and Testing Technology, Harbin Institute of Technology Press, Harbin, 2007, p. 29.

    Google Scholar 

  22. M.S. Mustapa and Y. Mutoh, Effects of size and spacing of uniformly distributed pearlite particles on fatigue crack growth behavior of ferrite–pearlite steels, Mater. Sci. Eng. A, 527(2010), No. 10-11, p. 2592.

    Article  Google Scholar 

  23. B.B. Straumal, S.V. Dobatkin, A.O. Rodin, S.G. Protasova, A.A. Mazilkin, D. Goll, and B. Baretzky, Structure and properties of nanograined Fe-C alloys after severe plastic deformation, Adv. Eng. Mater., 13(2011), No. 6, p. 463.

    Article  Google Scholar 

  24. T. Haisch, E.J. Mittemeijer, and J.W. Schultze, On the influence of microstructure and carbide content of steels on the electrochemical dissolution process in aqueous NaCl-electrolytes, Mater. Corros., 53(2002), No. 10, p. 740.

    Article  Google Scholar 

  25. N. Perez, Electrochemistry and Corrosion Science, Kluwer Academic Publishers, Boston, 2004.

    Book  Google Scholar 

  26. I.G. Wood, L. Vocadlo, K.S. Knight, D.P. Dobson, W.G. Marshall, G.D. Price, and J. Brodholt, Thermal expansion and crystal structure of cementite, Fe3C, between 4 and 600 K determined by time-of-flight neutron powder diffraction, J. Appl. Crystallogr., 37(2004), No. 1, p. 82.

    Article  Google Scholar 

  27. T.K. Sergeeva, A.S. Bolotov, G.G. Gulei, A.M. Kovalev, V.P. Mishina, G.I. Nosova, and V.D. Plakhtii, Monitoring the state of steel in stress corrosion failures of cross-country pipelines, Chem. Pet. Eng., 32(1996), No. 2, p. 171.

    Article  Google Scholar 

  28. K. Nakajima, M. Apel, and I. Steinbach, The role of carbon diffusion in ferrite on the kinetics of cooperative growth of pearlite: a multi-phase field study, Acta Mater., 54(2006), No. 14, p. 3665.

    Article  Google Scholar 

  29. W. Kurz and D.J. Fisher, Fundamentals of Solidification, Trans Tech Publications Ltd., Aedermannsdorf, 1986, p. 217.

    Google Scholar 

  30. G.Y. An, Theory of Casting Forming, China Machine Press, Beijing, 1990, p. 103.

    Google Scholar 

  31. F. Huyan, R. Larker, P. Rubin, and P. Hedström, Effect of solute silicon on the lattice parameter of ferrite in ductile irons, ISIJ. Int., 54(2014), No. 1, p. 248.

    Article  Google Scholar 

  32. G.H. Li, S.P. Pan, J.Y. Qin, Z.H. Zhang, and W.M. Wang, Insight into thermodynamics and corrosion behavior of Al–Ni–Gd glassy alloys from atomic structure, Corros. Sci., 66(2013), p. 360.

    Article  Google Scholar 

  33. A. Gebert, A. Concustell, A.L. Greer, L. Schultz, and J. Eckert, Effect of shot-peening on the corrosion resistance of a Zr-based bulk metallic glass, Scripta Mater., 62(2010), No. 9, p. 635.

    Article  Google Scholar 

  34. L.L. Meng, X.Y. Li, J. Pang, L. Wang, B. An, L.J. Yin, K.K. Song, and W.M. Wang, Casting atmosphere effects on the precipitates, magnetism, and corrosion resistance of Fe78Si9B13 glassy alloys, Metall. Mater. Trans. A, 44(2013), No. 11, p. 5122.

    Article  Google Scholar 

  35. B. An, Y.J. Li, Y. Liu, Y.G. Wang, L.C. Zhang, and W.M. Wang, Unique corrosion behavior of Fe78Si9B13 glassy alloy with different circumferential speeds under various chloride ion levels, J. Alloys Compd., 593(2014), p. 16.

    Article  Google Scholar 

  36. H.N. Hu, H.Y. Chen, J.L. Chen, and G.H. Wu, Magnetic properties of (110)- and (200)-oriented Fe-nanowire arrays, Phys. B, 368(2005), No. 1-4, p. 100.

    Article  Google Scholar 

  37. F.K. Lotgering, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures—I, J. Inorg. Nucl. Chem., 9(1959), No. 2, p. 113.

    Article  Google Scholar 

  38. C.H. Xu, W. Gao, and Y.L. Yang, Superplastic boronizing of a low alloy steel-microstructural aspects, J. Mater. Process. Technol., 108(2001), No. 3, p. 349.

    Article  Google Scholar 

  39. T.V. Jayaraman, N. Srisukhumbowornchai, S. Guruswamy, and M.L. Free, Corrosion studies of single crystals of iron–gallium alloys in aqueous environments, Corros. Sci., 49(2007), No. 10, p. 4015.

    Article  Google Scholar 

  40. A. Shahryari, J.A. Szpunar, and S. Omanovic, The influence of crystallographic orientation distribution on 316LVM stainless steel pitting behavior, Corros. Sci., 51(2009), No. 3, p. 677.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-min Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, Kc., Li, Gh., Sun, Ym. et al. Linking anisotropy with Fe3C distribution in AISI 1045 steel. Int J Miner Metall Mater 22, 1293–1303 (2015). https://doi.org/10.1007/s12613-015-1197-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1197-5

Keywords

Navigation