Skip to main content

Investigation on the Microstructure–Corrosion Correlation of Commercially Available AISI 1020 and 304 Steel

  • Conference paper
  • First Online:
Recent Advances in Materials Processing and Characterization

Abstract

Low carbon steel materials are commonly used for numerous applications for both scientific as well as practical purposes. These materials can be easily welded and forged and shaped. The two most common grades of commercially available low carbon steel are AISI 1020 and 304 grades. They are used as substrates for coating thin films to improve their performance. There are both low carbon, but differ substantially in their chemical compositions, structure, mechanical properties, and also their corrosion performance. The selection of the material for different applications usually involves an initial assessment of their structure–property correlation. Although there are a number of articles that have evaluated performance and characterized their properties of these commercially available materials for their applications, the structure–property–performance correlation of the materials is not available. This work correlates the chemical composition, microstructure, mechanical properties, and corrosion performance (by construction of Tafel plots through potentiodynamic polarization tests) of AISI 1020 and 304 steel and compares them. The work shows that while the mechanical properties of AISI 1020 are superior, the corrosion performance in 3.5 wt% NaCl solution is actually poor. The corrosion degradation AISI 1020 is observed to occur due to pitting corrosion aggravated by microcracks. The improved corrosion performance of AISI 304 steel is due to the presence of appreciable amounts of chromium and nickel in its chemical composition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chuaiphan W, Somrerk CA, Niltawach S, Sornil B (2012) Appl Mech Mater 268–270:283–290. https://doi.org/10.4028/www.scientific.net/AMM.268-270.283

  2. Masanta M, Shariff SM, Roy Choudhury A (2011) Wear 271(7–8):1124–1133. https://doi.org/10.1016/j.wear.2011.05.009

  3. Zhang J, Li S, Chenfeng L, Sun C, Shuai P, Xue Q, Lin Y, Huang M (2019) Surf Coat Technol 364(25):265–272. https://doi.org/10.1016/j.surfcoat.2019.02.085

    Article  CAS  Google Scholar 

  4. Ye Y, Zhang D, Liu T, Liu Z, Pub J, Liu W, Zhao H, Li X, Wang L (2019) Carbon 142:164–176. https://doi.org/10.1016/j.carbon.2018.10.050

    Article  CAS  Google Scholar 

  5. Zhang D, Wang M, Jiang N, Liu Y, Yu X, Zhang H (2020) Int J Electrochem Sci 15(2):4117–4126. 10.20962020.05.25

    Google Scholar 

  6. Malik J, Toor IH, Ahmed WH, Gasem ZM, Habib MA, Ben-Mansour R, Badr HM (2014) Int J Electrochem Sci 9:6765–6780

    Google Scholar 

  7. Mohammadi F (2011) Erosion-corrosion of 304 stainless steel. Doctoral thesis, University of Alberta

    Google Scholar 

  8. Cao C, Cheng J (2018) Surf Coat Technol 349:296–302. https://doi.org/10.1016/j.surfcoat.2018.06.001

  9. Alibakhshi E, Akbarian M, Ramezanzadeh M, Ramezanzadeh B, Mahdavian M (2018) Prog Org Coat 123:190–200. https://doi.org/10.1016/j.porgcoat.2018.07.008

    Article  CAS  Google Scholar 

  10. Martinez MA, Abenojar J, Bahrami M, Velasco F (2021) Metals 11:1007. https://doi.org/10.3390/met11071007

  11. Sathish Sharma G, Sugavaneswaran M, Vijayalakshmi U, Prakash R (2019) Ceram Int 45(10):13456–13463. https://doi.org/10.1016/j.ceramint.2019.04.046

  12. Lee H-S, Singh JK (2019) Corros Sci 146:254–268. https://doi.org/10.1016/j.corsci.2018.10.035

  13. Bijalwan P, Kumar A, Nayak SK, Banerjee A, Dutta M, Laha T (2019) J Alloy Compd 796(5):47–54. https://doi.org/10.1016/j.jallcom.2019.05.046

    Article  CAS  Google Scholar 

  14. Bartkowski D, Bartkowska A, Jurči P (2021) Opt Laser Technol 136:106784. https://doi.org/10.1016/j.optlastec.2020.106784

    Article  CAS  Google Scholar 

  15. Zamani MR, Meymiana, Ghaffarinej A, Fazli R, Mehr AK (2020) Colloids Surf A Physicochem Eng Aspects 593:124617. https://doi.org/10.1016/j.colsurfa.2020.124617

  16. Calderon S, Almeida Alves CF, Manninen NK, Cavaleiro A, Carvalho S (2019) Coatings 9(10):682. https://doi.org/10.3390/coatings9100682

  17. Siddiqui AR, Maurya R, Katiyar PK, Balani K (2020) Surf Coat Technol 404:126421. https://doi.org/10.1016/j.surfcoat.2020.126421

  18. Chanda UK, Behera A, Roy S, Pati S (2018) Int J Hydrogen Energy 43(52):23430–23440. https://doi.org/10.1016/j.ijhydene.2018.10.218

    Article  CAS  Google Scholar 

  19. Palani V, Kumar A, Vijaya Kumar KR, Kumaran P (2021) Int J Precis Eng Manuf 22:365–372. https://doi.org/10.1007/s12541-020-00458-x

  20. He S, Qiu Y, Sun Y, Zhang Z, Cheng J, Gao C, Zhao Z (2020) Int J Greenhouse Gas Control 94:102931. https://doi.org/10.1016/j.ijggc.2019.102931

    Article  CAS  Google Scholar 

  21. Mandal P, Usha Kiran N, Chanda UK, Pati S, Roy S (2021) SN Appl Sci 3:715. https://doi.org/10.1007/s42452-021-04710-5

  22. Abioyeab TE, Ariwoolac OE, Ogedengbec TI, Farayibib PK, Gbadeyan OO (2019) Mater Today Proc 17(3):871–877. https://doi.org/10.1016/j.matpr.2019.06.383

  23. Bermeo F, Quintana JP, Kleiman A, Sequeda F, Márquez A (2017) J Phys Conf Ser 792:012061. https://doi.org/10.1088/1742-6596/792/1/012061

    Article  CAS  Google Scholar 

  24. Vijayanand P, Kumar A, Vijaya Kumar KR, Hussain N, Kumaran P, Arungalai Vendan S (2017) Rasayan J Chem 10(2):652–664. https://doi.org/10.7324/RJC2017.1021707

  25. Bonetti I, dos S de EA, da Costa CE, Paredes RSC, Sucharski GB, da Costa EM, Franco E, Milan JCG (2019) Mater Res Express 6:086530

    Google Scholar 

  26. Jeyaprakash N, Duraiselvam M, Raju R (2018) Modelling of Cr3C2–25% NiCr laser alloyed cast iron in high temperature sliding wear condition using response surface methodology. Arch Metall Mater 63(3):1303–1315

    CAS  Google Scholar 

  27. Palanisamy D, Manikandan N, Ramesh R, Devaraju A, ArulKirubakaran D (2020) Development of neural network models for wire electrical discharge machining of Haste alloy. Mater Today Proc 39(1):438–445

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sasmita Sahu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Roy, S., Nayak, B.B., Sahu, S. (2023). Investigation on the Microstructure–Corrosion Correlation of Commercially Available AISI 1020 and 304 Steel. In: Arockiarajan, A., Duraiselvam, M., Raju, R., Reddy, N.S., Satyanarayana, K. (eds) Recent Advances in Materials Processing and Characterization. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-19-5347-7_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-19-5347-7_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-19-5346-0

  • Online ISBN: 978-981-19-5347-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics