Skip to main content
Log in

Effect of Heat Treatments on the Mechanical and Electrochemical Corrosion Behavior of 38CrSi and AISI 4140 Steels

  • Technical Article
  • Published:
Metallography, Microstructure, and Analysis Aims and scope Submit manuscript

Abstract

The aim of this investigation was to compare the microstructural, mechanical and electrochemical corrosion characteristics of 38CrSi steel with widely used AISI 4140 steel under various heat treatment processes to widen its field of applications. Experimental steels 38CrSi and AISI 4140 were subjected to austenitizing at 900 °C for 30 min followed by annealing, quenching in oil and quenching followed by tempering at 400 °C for 120 min. Microstructure of 38CrSi and AISI 4140 steels was characterized by light optical and scanning electron microscopy. Tensile, Charpy impact toughness and Rockwell hardness testing techniques were used to evaluate the mechanical properties. Electrochemical corrosion behavior was evaluated by a Tafel scan in tape water. Results show that microstructure of both steels comprised of ferrite and pearlite after annealing, packets and blocks of lath martensite with retained austenite after quenching and tempered lath martensite with retained austenite after quenching, and tempering with varying grain size distribution and volume fractions of different phases. Hardness and tensile properties of both steels varied in quite identical manner, while impact toughness of both steels varied in inverse manner. 38CrSi steel was found to be brittle, while AISI 4140 steel exhibited excellent properties under all heat treatment processes. In 38CrSi, the corrosion rate decreases as compared to the as-received sample from 0.515 to 0.486 mpy in quenching and tempering heat treatment, while in AISI 4140 steel the corrosion rate decreases during quenching from 0.620 to 0.472 mpy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. A.D. da Silva, T.A. Pedrosa, J.L. Gonzalez Mendez, X. Jiang, P.R. Cetlin, T. Altan, Distortion in quenching an AISI 4140 C-ring predictions and experiments. Mater. Des. 42, 55–61 (2012)

    Article  Google Scholar 

  2. M.H. KhaniSanij, S.S. GhasemiBanadkouki, A.R. Mashreghi, M. Moshrefifar, The effect of single and double quenching and tempering heat treatments on the microstructure and mechanical properties of AISI 4140 steel. Mater. Des. 42, 339–346 (2012)

    Article  Google Scholar 

  3. J.I. Cheng, W. Lei, M.Y. Zhu, Effect of subcritical annealing temperature on microstructure and mechanical properties of SCM435 steel. J. Iron Steel Res. Int. 22, 1031–1036 (2015)

    Article  Google Scholar 

  4. Z. Lü, H.F. Zhang, Q. Meng, Z.H. Wang, W.T. Fu, Effect of cyclic annealing on microstructure and mechanical properties of medium carbon steel. J. Iron Steel. Res. Int. 23, 145–150 (2016)

    Article  Google Scholar 

  5. L. Ma, S. Hu, J. Shen, J. Han, Effects of annealing temperature on microstructure, mechanical properties and corrosion resistance of 30% Cr super ferritic stainless steel. Mater. Lett. 184, 204–207 (2016)

    Article  Google Scholar 

  6. X. Xiong, S. Hu, N. Dang, K. Hu, Effect of stress-relief annealing on microstructure, texture and hysteresis curve of mechanically cut non-oriented Fe-Si steel. Mater. Charact. 132, 239–247 (2017)

    Article  Google Scholar 

  7. Y. Xiong, T. He, H. Li, Y. Lu, F. Ren, A.A. Volinsky, Annealing effects on microstructure and mechanical properties of cryorolled Fe–25Cr–20Ni steel. Mater. Sci. Eng. A 703, 68–75 (2017)

    Article  Google Scholar 

  8. Y. Xu, Z.P. Hu, Y. Zou, X.D. Tan, D.T. Han, S.Q. Chen, D.G. Ma, R.D.K. Misra, Effect of two-step intercritical annealing on microstructure and mechanical properties of hot rolled medium manganese TRIP steel containing δ- ferrite. Mater. Sci. Eng. A 688, 40–55 (2017)

    Article  Google Scholar 

  9. H.S. Wang, J. Kang, W.X. Dou, Y.X. Zhang, G. Yuan, G.M. Cao, R.D.K. Misra, G.D. Wang, Microstructure and mechanical properties of hot-rolled and heat-treated TRIP steel with direct quenching process. Mater. Sci. Eng. A. 702, 350–359 (2017)

    Article  Google Scholar 

  10. M.A. Hafeez, A. Farooq, Microstructural, mechanical and tribological investigation of 30CrMnSiNi2A ultra-high strength steel under various tempering temperatures. Mater. Res. Express 5, 016505 (2018)

    Article  Google Scholar 

  11. L.R.C. Malheiros, E.A.P. Rodriguez, A. Arlazarov, Mechanical behavior of tempered martensite: characterization and modeling. Mater. Sci. Eng. A 706, 38–47 (2017)

    Article  Google Scholar 

  12. H. Liu, P. Fu, H. Liu, C. Sun, X. Ma, D. Li, Microstructure evolution and mechanical properties in 718H pre-hardened mold steel during tempering. Mater. Sci. Eng. A 709, 181–192 (2018)

    Article  Google Scholar 

  13. Y.J. Zhao, X.P. Ren, Z.L. Hu, Z.P. Xiong, J.M. Zeng, B.Y. Hou, Effect of tempering on microstructure and mechanical properties of 3Mn–Si–Ni martensitic steel. Mater. Sci. Eng. A 711, 397–404 (2018)

    Article  Google Scholar 

  14. Y. Zhang, D. Zhan, X. Qi, Z. Jiang, H. Zhang, Microstructure and mechanical properties of Cr14 ultra-high-strength steel at different tempering temperatures around 773 K. Mater. Sci. Eng. A 698, 152–161 (2017)

    Article  Google Scholar 

  15. Z. Jiang, P. Wang, D. Li, Y. Li, The evolutions of microstructure and mechanical properties of 2.25Cr–1Mo–0.25V steel with different initial microstructures during tempering. Mater. Sci. Eng. A. 699, 165–175 (2017)

    Article  Google Scholar 

  16. J. Kang, F.C. Zhang, X.W. Yang, B. Lv, K.M. Wu, Effect of tempering on the microstructure and mechanical properties of a medium carbon bainitic steel. Mater. Sci. Eng. A 686, 150–159 (2017)

    Article  Google Scholar 

  17. Z.C. Li, H. Ding, R.D.K. Misra, Z.H. Cai, Microstructure mechanical property relationship and austenite stability in medium-Mn TRIP steels: the effect of austenite-reverted transformation and quenching-tempering treatments. Mater. Sci. Eng. A 682, 211–219 (2017)

    Article  Google Scholar 

  18. Y. Liu, L. Shi, C. Liu, L. Yu, Z. Yan, H. Li, Effect of step quenching on microstructures and mechanical properties of HSLA steel. Mater. Sci. Eng. A 675, 371–378 (2016)

    Article  Google Scholar 

  19. C.W. Li, L.Z. Han, X.M. Luo, Q.D. Liu, J.F. Gu, Effect of tempering temperature on the microstructure and mechanical properties of a reactor pressure vessel steel. J. Nucl. Mater. 477, 246–256 (2016)

    Article  Google Scholar 

  20. F. Liu, X. Lin, M. Song, H. Yang, K. Song, P. Guo, W. Huang, Effect of tempering temperature on microstructure and mechanical properties of laser solid formed 300 M steel. J. Alloys Compd. 689, 225–232 (2016)

    Article  Google Scholar 

  21. X. Shi, W. Zeng, Q. Zhao, W. Peng, C. Kang, Study on the microstructure and mechanical properties of Aermet 100 steel at the tempering temperature around 482 °C. J. Alloys Compd. 679, 184–190 (2016)

    Article  Google Scholar 

  22. D.R. Barbadikar, G.S. Deshmukh, L. Maddi, K. Laha, P. Parameswaran, A.R. Ballal, D.R. Peshwe, R.K. Paretkar, M. Nandagopal, M.D. Mathew, Effect of normalizing and tempering temperatures on microstructure and mechanical properties of P92 steel. Int. J. Press. Vessel. Pip. 132–133, 97–105 (2015)

    Article  Google Scholar 

  23. X.Y. Cheng, H.X. Zhang, H. Li, H.P. Shen, Effect of tempering temperature on the microstructure and mechanical properties in mooring chain steel. Mater. Sci. Eng. A 636, 164–171 (2015)

    Article  Google Scholar 

  24. X.G. Tao, L.Z. Han, J.F. Gu, Effect of tempering on microstructure evolution and mechanical properties of X12CrMoWVNbN10-1-1 steel. Mater. Sci. Eng. A 618, 189–204 (2014)

    Article  Google Scholar 

  25. Y. Luo, J. Peng, H. Wang, X. Wu, Effect of tempering on microstructure and mechanical properties of a non-quenched bainitic steel. Mater. Sci. Eng. A 527, 3433–3437 (2010)

    Article  Google Scholar 

  26. A.H. Meysami, R. Ghasemzadeh, S.H. Seyedein, M.R. Aboutalebi, An investigation on the microstructure and mechanical properties of direct-quenched and tempered AISI 4140 steel. Mater. Des. 31, 1570–1575 (2010)

    Article  Google Scholar 

  27. J.W. He, X.M. Wang, S.N. Ma, C.Q. Li, X.Q. Feng, Characterization and tribological properties of nanocrystalline surface layer of 38CrSi alloyed steel induced by SFPB. Rev. Adv. Mater. Sci. 33, 19–23 (2013)

    Google Scholar 

  28. S.Y. Lu, K.F. Yao, Y.B. Chen, M.H. Wang, X. Liu, X. Ge, The effect of tempering temperature on the microstructure and electrochemical properties of a 13 wt.% Cr-type martensitic stainless steel. Electrochim. Acta 165, 45–55 (2015)

    Article  Google Scholar 

  29. P.R. Roberge, Handbook of Corrosion Engineering (McGraw-Hill, New York, 2000)

    Google Scholar 

  30. R.W. Revie, H.H. Uhlig, Corrosion and Corrosion Control, 4th edn. (Wiley, New York, 2008)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ameeq Farooq.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hafeez, M.A., Farooq, A. Effect of Heat Treatments on the Mechanical and Electrochemical Corrosion Behavior of 38CrSi and AISI 4140 Steels. Metallogr. Microstruct. Anal. 8, 479–487 (2019). https://doi.org/10.1007/s13632-019-00556-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13632-019-00556-x

Keywords

Navigation