Skip to main content
Log in

Impedance and ferroelectric properties of Sr2+ modified PZT-PMN ceramics

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Sr2+ modified polycrystalline PZT-PMN ceramics were synthesized by a semi-wet route. Impedance spectroscopy studies indicate the bulk and grain boundary effects of PZT-PMN material along with the negative temperature coefficient of resistance. The bulk conductivity exhibits an Arrhenius-type thermally activated hopping process which is supported by the AC conductivity behavior as a function of frequency and temperature. It is observed that the remnant polarization increases with an increase in the Sr2+ content in PZT-PMN.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. G.H. Haertling, Ferroelectric ceramics: history and technology, J. Am. Ceram. Soc., 82(1999), No. 4, p. 797.

    Article  Google Scholar 

  2. H.M.S. Georgiou and R.B. Mrad, Experimental and theoretical assessment of PZT modeled as RC circuit subject to variable voltage excitations, Mechatronics, 14(2004), No. 6, p. 667.

    Article  Google Scholar 

  3. T.L. Jordan and Z. Ounaies, Piezoelectric Ceramics Characterization, National Aeronautics and Space Administration Langley Research Center, Hampton, Virginia, 2001, ICASE Report No. 2001-28.

    Google Scholar 

  4. S.M. Gupta, N.V. Prasad, and V.K. Wadhawan, Impedance spectroscopy of the relaxor behaviour of PMN and La-doped PMN-PT compositions, Ferroelectrics, 326(2005), No. 1, p. 43.

    Article  Google Scholar 

  5. J. Cho, M. Anderson, R. Richards, D. Bahr, and C. Richards, Optimization of electromechanical coupling for a thin-film PZT membrane: II. Experiment, J. Micromech. Microeng., 15(2005), No. 10, p. 1804.

    Article  Google Scholar 

  6. J.S. Kim, K. Choi, and I. Yu, A new method of determining the equivalent circuit parameters of piezoelectric resonators and analysis of the piezoelectric loading effect, IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 40(1993), No. 4, p. 424.

    Article  Google Scholar 

  7. A.B. Alles, V.R.W. Amarakoon, and V.L. Burdick, Positive temperature coefficient of resistivity effect in undoped, atmospherically reduced barium titanate, J. Am. Ceram. Soc., 72(1989), No. 1, p. 148.

    Article  Google Scholar 

  8. J. Suchanicz, The low-frequency dielectric relaxation Na0.5Bi0.5TiO3 ceramics, Mater. Sci. Eng. B, 55(1998), No. 1–2, p. 114.

    Article  Google Scholar 

  9. P.K. Jana, S. Sarkar, S. Karmakar, and B.K. Chaudhuri, Conduction mechanism and dielectric relaxation in high dielectric KxTiyNi1−xy O, J. Appl. Phys., 102(2007), No. 8, p. 084105.

    Article  Google Scholar 

  10. Z. Shen, J. Liu, J. Grins, M. Nygren, P. Wang, Y. Kan, H. Yan, and U. Sutter, Effective grain alignment in Bi4Ti3O12 ceramics by superplastic deformation induced directional dynamic ripening, Adv. Mater., 17(2005), No. 6, p. 676.

    Article  Google Scholar 

  11. R.K. Dwivedi, Om. Prakash, and D. Kumar, Valence compensated perovskite oxide system Ca1−x LaxTi1−x CrxO3: Part II. Electrical transport behavior, J. Mater. Sci., 36(2001), No. 15, p. 3649.

    Article  Google Scholar 

  12. A. Kumar and S.K. Mishra, Effects of Sr2+ substitution on the structural, dielectric, and piezoelectric properties of PZT-PMN ceramics, Int. J. Miner. Metall. Mater., 21(2014), No. 2, p. 175.

    Article  Google Scholar 

  13. S. Selvasekarapandian and M. Vijayakumar, The ac impedance spectroscopy studies on LiDyO2, Mater. Chem. Phys., 80(2003), No. 1, p. 29.

    Article  Google Scholar 

  14. B. Behera, P. Nayak, and R.N.P. Choudhary, Study of complex impedance spectroscopic properties of LiBa2Nb5O15 ceramics, Mater. Chem. Phys., 106(2007), No. 2–3, p. 193.

    Article  Google Scholar 

  15. S.K. Barik, P.K. Mahapatra, and R.N.P. Choudhary, Structural and electrical properties of Na1/2La1/2TiO3 ceramics, Appl. Phys. A, 85(2006), No. 2, p. 199.

    Article  Google Scholar 

  16. D.C. Sinclair and A.R. West, Impedance and modulus spectroscopy of semiconducting BaTiO3 showing positive temperature coefficient of resistance, J. Appl. Phys., 66(1989), p. 3850.

    Article  Google Scholar 

  17. N.J. Kidner, A. Meier, Z.J. Homrighaus, B.W. Wessels, T.O. Mason, and E.J. Garboczi, Complex electrical (impedance/dielectric) properties of electroceramic thin films by impedance spectroscopy with interdigital electrodes, Thin Solid Films, 515(2007), No. 11, p. 4588.

    Article  Google Scholar 

  18. R.N.P. Choudhary, D.K. Pradhan, C.M. Tirado, G.E. Bonilla, and R.S. Katiyar, Effect of La substitution on structural and electrical properties of Ba(Fe2/3W1/3)O3 nanoceramics, J. Mater. Sci., 42(2007), No. 17, p. 7423.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. K. Mishra.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Mishra, S.K. Impedance and ferroelectric properties of Sr2+ modified PZT-PMN ceramics. Int J Miner Metall Mater 21, 595–603 (2014). https://doi.org/10.1007/s12613-014-0947-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-014-0947-0

Keywords

Navigation