Skip to main content
Log in

Impact of Sm-substitution and microwave sintering on dielectric and mechanical properties of SrBi4Ti4O15 ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In quest of finding an alternative for lead-based materials, ferroelectric materials with Bi-layered structure have attracted great attention due to their potential applications in non-volatile memory, electro-optic devices, and microelectromechanical systems. In this work, samarium (Sm)-substituted SrBi4Ti4O15 (SBTi) ceramics have been prepared by solid-state reaction method and sintered using microwave, as well as conventional heating. XRD phase analysis reveals the formation of single phase compound, and there is no effect of Sm-substitution on basic crystal structure. SEM micrographs showed the plate-like structure of grains both in microwave and conventional furnace. Temperature-dependent dielectric properties were investigated in the temperature range 40–600 °C and frequency range 10 kHz–1 MHz. Sm-substitution increases dielectric constant upto Sm ~ 0.75 and also introduces small relaxor behavior. Hardness and Young’s modulus of SrBi4-xSmxTi4O15 ceramics were measured by nanoindentation. The structural, morphology, dielectric, and mechanical properties of pure and substituted SrBi4Ti4O15 ceramics along with sintering methods have been investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. A. Deng, Wu Jiagang, Effects of rare-earth dopants on phase structure and electrical properties of lead-free bismuth sodium titanate-based ceramics. J. Materiomics 6(2), 286–292 (2020)

    Article  Google Scholar 

  2. D. Xingru, W. Huang, S.K. Thatikonda, Ni Qin, D. Bao, Improved ferroelectric and dielectric properties of Sm, La co-doped Bi4Ti3O12 multifunctional thin films with orange-red emission. J. Mater. Sci. 30, 13158–13166 (2019)

    Google Scholar 

  3. A. Khokhar, P.K. Goyal, O.P. Thakur, A.K. Shukla, K. Sreenivas, Influence of lanthanum distribution on dielectric and ferroelectric properties of BaBi4-xLaxTi4O15 ceramics. Materi. Chem. Phys. 152, 13–25 (2015)

    Article  CAS  Google Scholar 

  4. I.M. Reaney, D. Damjanovic, Crystal structure and domain-wall contributions to the piezoelectric properties of strontium bismuth titanate ceramics. J. Appl. Phys. 80(7), 4223–4225 (1996)

    Article  CAS  Google Scholar 

  5. A. Rambabu, K. Sudheendran, K.C. James Raju, Crystal orientation dependent microwave dielectric properties of sputtered SBTi thin films on fused silica substrates. J Mater. Sci. 24, 2169–2175 (2013)

    CAS  Google Scholar 

  6. B. Mamatha, M.B. Suresh, A.R. James, M. Vithal, P. Sarah, Synthesis and electrical properties of SrBi4Ti4O15 piezoelectric ceramics. Phys. Scr. 84, 055704–055709 (2011)

    Article  Google Scholar 

  7. P. Nayak, T. Badapanda, S. Panigrahi, Investigation of site selectivity of lanthanum in SrBi4Ti4O15 ceramic by structural, dielectric, ferroelectric and conduction behaviour. J. Mater. Sci. 28(1), 625–632 (2017)

    CAS  Google Scholar 

  8. S. Hwee Ng, J.M. Xue, J. Wang, High temperature piezoelectric strontium bismuth titanate from mechanical activation of mixed oxides. J. Mater. Chem. Phys. 75, 131–135 (2002)

    Article  Google Scholar 

  9. C.H. Park, D.J. Chadi, Microscopic study of oxygen-vacancy defects in ferroelectric perovskites. Phys. Rev. B 57, R13961–R13964 (1998)

    Article  CAS  Google Scholar 

  10. A.G. Chernikova, M.G. Kozodaev, D.V. Negrov, E.V. Korostylev, M.H. Park, U. Schroeder, C.S. Hwang, A.M. Markeev, Improved ferroelectric switching endurance of La-doped Hf0.5Zr0.5O2 thin films. ACS Appl. Mater. Interfaces 10, 2701–2708 (2018)

    Article  CAS  Google Scholar 

  11. R. Rachna, S. Bhattacharya, S.M. Gupta, Dielectric properties and ac-conductivity analysis of Bi3.25La0.75Ti3O12 ceramic using impedance spectroscopy. J. Phys. Chem. Sol. 69, 822–829 (2008)

    Article  CAS  Google Scholar 

  12. J. Hou, R.V. Kumar, Y. Qu, D. Krsmanovic, B-site doping effect on electrical properties of Bi4Ti3-2xNbxTaxO12 ceramics. Scripta Mater. 61, 664–667 (2009)

    Article  CAS  Google Scholar 

  13. M. Adamczyk, L. Kozielski, M. Pilch, M. Pawelczyk, A. Soszynski, Inflence of vanadium dopant on relaxor behaviour of BaBi2Nb2O9 ceramics. Ceram. Int. 139, 4589–4595 (2013)

    Article  Google Scholar 

  14. J. Geetanjali Parida, Bera, Electrical properties of niobium doped Bi4Ti3O12-SrBi4Ti4O15 intergrowth ferroelectrics. Ceram. Int. 40, 3139–3144 (2014)

    Article  Google Scholar 

  15. F. Zhang, O. Wahyudi, Z. Liu, Gu Hui, Y. Li, Preparation and electrical properties of a new-type intergrowth bismuth layer-structured (Bi3TiNbO9)1(Bi4Ti3O12)2 ceramics. J. Alloy. Compd. 753, 54–59 (2018)

    Article  CAS  Google Scholar 

  16. A. Rambabu, K.C. James Raju, Effect of increasing lanthanum substitution and the sintering procedures on the properties of SrBi4Ti4O15 ceramics. Bull. Mater. Sci. 38(5), 1375–1380 (2015)

    Article  CAS  Google Scholar 

  17. E. Sivanagi Reddy, K.C. Sudhin Sukumaran, J. Raju, Microwave assisted synthesis and sintering of lead-free ferroelectric CaBi4Ti4O15 ceramics. Mater. Today 3, 2213–2219 (2016)

    Google Scholar 

  18. O.P. Thakur, C. Prakash, D.K. Agrawal, Microwave synthesis and sintering of Ba0.95Sr0.05TiO3. J. Mater. Lett. 56, 970–973 (2002)

    Article  CAS  Google Scholar 

  19. M. Raghavender, G. Kumar, G. Prasad, Modification of dielectric relaxations in sodium titanate with samarium doping. J. Phys Chem Solids. 67(8), 1803–1808 (2006)

    Article  CAS  Google Scholar 

  20. S. Padamavathi, J. Omprakash, C. Sameera Devi, M. Vithal, G. Prasad, G. Kumar, Effect of simultaneous doping of Pr and Sm on electrical conductivity and relaxation process in BLSF-SrBi4Ti4O15”. Ferroelectrics 474(1), 83–98 (2015)

    Article  CAS  Google Scholar 

  21. U. Ravikiran, P. Sarah, M. Buchi Suresh, E. Zacharia, Effect of Sm and Na substitution on dielectric properties of SrBi4Ti4O15. Ferroelectrics 537, 237–245 (2019)

    Article  Google Scholar 

  22. A. Khokhar, P.K. Goyal, K. Sreenivas, Site selectivity of Sm3+ ions in BaBi4-xSmxTi4O15 ceramics and its influence on electrical properties. Mater. Lett. 160, 408–411 (2015)

    Article  CAS  Google Scholar 

  23. I. Rychetsky, S. Kamba, V. Porokhonskyy, A. Pashkin, M. Savinov, V. Bovtun, J. Petzelt, M. Kosec, M. Dressel, J. Phys. Cond. Mater. 15, 6017–6030 (2003)

    Article  CAS  Google Scholar 

  24. S.K. Ghosh, B. Kaushik Mallick, E.Sinha Tiwari, S.K. Rout, Relaxor-ferroelectric BaLnZT (Ln = La, Nd, Sm, Eu, and Sc) ceramics for actuator and energy storage application. Mater. Res. Express 5, 015509–015524 (2018)

    Article  Google Scholar 

  25. X. Chou, J. Zhai, H. Jiang, Xi Yao, Dielectric and relaxor behavior of rare-earth (La, Sm, Eu, Dy, Y) substituted barium zirconium titanate ceramics. J. Appl. Phys. 102, 084106–108111 (2007)

    Article  Google Scholar 

  26. C. Miranda, M.E.V. Costa, M. Avdeev, A.L. Kholakin, J.L. Baptista, Relaxor properties of Ba-based layered perovskites. J. Eur. Ceram. Soc. 21, 1303–1306 (2001)

    Article  CAS  Google Scholar 

  27. R.Z. Hou, X.M. Chen, Y.W. Zeng, Diffuse ferroelectric phase transition and relaxor behaviors in ba-based bismuth layer-structured compounds and La-substituted SrBi4Ti4O15. J. Am. Cer. Soc. 89(9), 2839–2844 (2006)

    CAS  Google Scholar 

  28. D. Ben Jennet, P. Marchet, M. El Maaoui, J.P. Mercurio, From ferroelectric to relaxor behavior in the Aurivillius-type Bi4−xBaxTi3−xNbxO12 (0≤x≤1.4) solid solutions. Mater. Lett. 59(2–3), 376–382 (2005)

    Article  CAS  Google Scholar 

  29. K. Uchino, S. Nomura, Ferroelectrics 44, 55–61 (1982)

    Article  CAS  Google Scholar 

  30. J. Wang, H. Nie, C. Lan, G. Wang, X. Dong, X. Chen, F. Cao, H. He, Microstructure, electrical and mechanical properties of MgO nanoparticles-reinforced porous PZT 95/5 ferroelectric ceramics. Ceram. Int. 39, 3915–3919 (2013)

    Article  CAS  Google Scholar 

  31. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res 7, 1564–1583 (1992)

    Article  CAS  Google Scholar 

  32. S. Jiansirisomboon, T. Sreesattabud, A. Watcharapasorn, Electrical and mechanical properties of ferroelectric lead zirconate titanate/tungsten oxide ceramics. Ceram. Int. 34, 719–722 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

One of the authors, A. Rambabu, gratefully acknowledges the financial support received from ITPAR-II of DST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Rambabu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rambabu, A., Raju, K.C.J. Impact of Sm-substitution and microwave sintering on dielectric and mechanical properties of SrBi4Ti4O15 ceramics. J Mater Sci: Mater Electron 31, 19698–19712 (2020). https://doi.org/10.1007/s10854-020-04496-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04496-z

Navigation