Skip to main content
Log in

A Review on cLF36, a Novel Recombinant Antimicrobial Peptide-Derived Camel Lactoferrin

  • Review
  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Lactoferrin is an antimicrobial peptide (AMP) playing a pivotal role in numerous biological processes. The primary antimicrobial efficacy of lactoferrin is associated with its N-terminal end, which contains various peptides, such as lactoferricin and lactoferrampin. In this context, our research team has developed a refined chimeric 42-mer peptide known as cLF36 over the past few years. This peptide encompasses the complete amino acid sequence of camel lactoferrampin and partial amino acid sequence of lactoferricin. The peptide’s activity against human, avian, and plant bacterial pathogens has been assessed using different biological platforms, including prokaryotic (P170 and pET) and eukaryotic (HEK293) expression systems. The peptide positively influenced the growth performance and intestinal morphology of chickens challenged with pathogen bacteria. Computational methods and in vitro studies showed the peptide’s antiviral effects against hepatitis C virus, influenza virus, and rotavirus. The chimeric peptide exhibited higher activity against certain tumor cell lines compared to normal cells, which may be attributed to the peptide’s interaction with negatively charged glycosaminoglycans on the surface of tumor cells. Importantly, this peptide exhibited no toxicity against host cells and demonstrated remarkable thermal and protease stability in serum. In conclusion, while our investigations suggest that the chimeric peptide, cLF36, may offer potential as a candidate or complementary option to some available antibiotics, antiviral agents, and chemical pesticides, significant uncertainties remain regarding its cost-effectiveness, as well as its pharmacodynamic and pharmacokinetic characteristics, which require further elucidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data Availability

No datasets were generated or analysed during the current study.

References

  1. Ebrahimi SN (2023) Herbal interventions in poultry production: addressing disease risks and antibiotic resistance. J Poult Sci Avian Dis 1:1–2

    Article  Google Scholar 

  2. Lotfalizadeh N, Sadr S, Morovati S, Lotfalizadeh M, Hajjafari A, Borji H (2023) A potential cure for tumorassociatedimmunosuppression by Toxoplasma gondii. Cancer Rep 7(2):e1963. https://doi.org/10.1002/cnr2.1963

    Article  CAS  Google Scholar 

  3. Castanon JIR (2007) History of the use of antibiotic as growth promoters in European poultry feeds. Poult Sci 86:2466–2471

    Article  CAS  PubMed  Google Scholar 

  4. Khaldi N, Shields DC (2011) Shift in the isoelectric-point of milk proteins as a consequence of adaptive divergence between the milks of mammalian species. Biol Direct 6:1–9

    Article  Google Scholar 

  5. Le PA, Karav S, Rouquié C et al (2017) Characterization of recombinant human lactoferrin N-glycans expressed in the milk of transgenic cows. PLoS ONE 12:e0171477

    Article  Google Scholar 

  6. Gupta C, Prakash D (2017) Therapeutic potential of milk whey Beverages 3:31

    Google Scholar 

  7. Rachman AB, Maheswari RRA, Bachroem MS (2015) Composition and isolation of lactoferrin from colostrum and milk of various goat breeds. Procedia Food Sci 3:200–210

    Article  Google Scholar 

  8. Bosze Z (2007) Bioactive components of milk. Springer Science & Business Media

    Google Scholar 

  9. Artym J (2010) The role of lactoferrin in the iron metabolism. Part II. Antimicrobial and antiinflammatoryeffect of lactoferrin by chelation of iron. Adv Hyg Exp Med 64:604–616

    Google Scholar 

  10. Cassat JE, Skaar EP (2013) Iron in infection and immunity. Cell Host Microbe 13:509–519

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. González-Chávez SA, Arévalo-Gallegos S, Rascón-Cruz Q (2009) Lactoferrin: structure, function and applications. Int J Antimicrob Agents 33:301-e1

    Article  Google Scholar 

  12. Tomita M, Wakabayashi H, Shin K et al (2009) Twenty-five years of research on bovine lactoferrin applications. Biochimie 91:52–57

    Article  CAS  PubMed  Google Scholar 

  13. Bruni N, Capucchio MT, Biasibetti E et al (2016) Antimicrobial activity of lactoferrin-related peptides and applications in human and veterinary medicine. Molecules 21:752

    Article  PubMed  PubMed Central  Google Scholar 

  14. Fadnes B, Rekdal Ø, Uhlin-Hansen L (2009) The anticancer activity of lytic peptides is inhibited by heparan sulfate on the surface of the tumor cells. BMC Cancer 9:1–13

    Article  Google Scholar 

  15. Yang N, Lejon T, Rekdal Ø (2003) Antitumour activity and specificity as a function of substitutions in the lipophilic sector of helical lactoferrin-derived peptide. J Pept Sci an Off Publ Eur Pept Soc 9:300–311

    CAS  Google Scholar 

  16. Sang Y, Blecha F (2009) Porcine host defense peptides: expanding repertoire and functions. Dev Comp Immunol 33:334–343

    Article  CAS  PubMed  Google Scholar 

  17. Ndlovu B, Schoeman H, Franz C, Du Toit M (2015) Screening, identification and characterization of bacteriocins produced by wine-isolated LAB strains. J Appl Microbiol 118:1007–1022

    Article  CAS  PubMed  Google Scholar 

  18. Bolscher JGM, Adao R, Nazmi K et al (2009) Bactericidal activity of LFchimera is stronger and less sensitive to ionic strength than its constituent lactoferricin and lactoferrampin peptides. Biochimie 91:123–132

    Article  CAS  PubMed  Google Scholar 

  19. Wang Y, Shan T, Xu Z et al (2006) Effect of lactoferrin on the growth performance, intestinal morphology, and expression of PR-39 and protegrin-1 genes in weaned piglets. J Anim Sci 84:2636–2641

    Article  CAS  PubMed  Google Scholar 

  20. Tang Z, Yin Y, Zhang Y et al (2008) Effects of dietary supplementation with an expressed fusion peptide bovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal morphology in piglets weaned at age 21 d. Br J Nutr 101:998–1005

    Article  PubMed  Google Scholar 

  21. Dheeb BI, Al-Mudallal NH, Salman ZA et al (2015) The inhibitory effects of human, camel and cow’s milk against some pathogenic fungi in Iraq. Jordan J Biol Sci 147:1–5

    Google Scholar 

  22. Tanhaeian A, Sekhavati MH, Moghaddam M (2020) Antimicrobial activity of some plant essential oils and an antimicrobial-peptide against some clinically isolated pathogens. Chem Biol Technol Agric 7:1–11

    Article  Google Scholar 

  23. Tanhaeian A, Nazifi N, Shahriari Ahmadi F, Akhlaghi M (2020) Comparative study of antimicrobial activity between some medicine plants and recombinant Lactoferrin peptide against some pathogens of cultivated button mushroom. Arch Microbiol 202:2525–2532

    Article  CAS  PubMed  Google Scholar 

  24. Tanhaeian A, Mirzaii M, Pirkhezranian Z, Sekhavati MH (2020) Generation of an engineered food-grade Lactococcus lactis strain for production of an antimicrobial peptide: in vitro and in silico evaluation. BMC Biotechnol 20:1–13

    Article  Google Scholar 

  25. Tanhaeian A, Shahriari Ahmadi F, Sekhavati MH, Mamarabadi M (2018) Expression and purification of the main component contained in camel milk and its antimicrobial activities against bacterial plant pathogens. Probiotics Antimicrob Proteins 10(4):787–793. https://doi.org/10.1007/s12602-18

    Article  CAS  PubMed  Google Scholar 

  26. Daneshmand A, Kermanshahi H, Sekhavati MH et al (2019) Antimicrobial peptide, cLF36, affects performance and intestinal morphology, microflora, junctional proteins, and immune cells in broilers challenged with E. coli. Sci Rep 9:14176

    Article  PubMed  PubMed Central  Google Scholar 

  27. Tahmoorespur M, Azghandi M, Javadmanesh A et al (2020) A novel chimeric anti-HCV peptide derived from camel lactoferrin and molecular level insight on its interaction with E2. Int J Pept Res Ther 26:1593–1605

    Article  CAS  Google Scholar 

  28. Daneshmand A, Kermanshahi H, Sekhavati MH et al (2020) Effects of cLFchimera peptide on intestinal morphology, integrity, microbiota, and immune cells in broiler chickens challenged with necrotic enteritis. Sci Rep 10:17704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Tanhaiean A, Azghandi M, Razmyar J et al (2018) Recombinant production of a chimeric antimicrobial peptide in E. coli and assessment of its activity against some avian clinically isolated pathogens. Microb Pathog 122:73–78

    Article  CAS  PubMed  Google Scholar 

  30. Tanhaieian A, Sekhavati MH, Ahmadi FS, Mamarabadi M (2018) Heterologous expression of a broad-spectrum chimeric antimicrobial peptide in Lactococcus lactis: its safety and molecular modeling evaluation. Microb Pathog 125:51–59

    Article  CAS  PubMed  Google Scholar 

  31. Sijbrandij T, Ligtenberg AJ, Nazmi K et al (2017) Effects of lactoferrin derived peptides on simulants of biological warfare agents. World J Microbiol Biotechnol 33:1–9

    Article  CAS  Google Scholar 

  32. Chan DI, Prenner EJ, Vogel HJ (2006) Tryptophan-and arginine-rich antimicrobial peptides: structures and mechanisms of action. Biochim Biophys Acta (BBA)-Biomembranes 1758:1184–1202

    Article  CAS  PubMed  Google Scholar 

  33. Strøm MB, Svendsen JS, Rekdal Ø (2000) Antibacterial activity of 15-residue lactoferricin derivatives. J Pept Res 56:265–274

    Article  PubMed  Google Scholar 

  34. Bikshapathy E, Sitaram N, Nagaraj R (1999) Effect of introducing p-fluorophenylalanine and multiple tryptophan residues in a 13-residue antibacterial peptide. Protein Pept Lett 6:67–71

    Article  CAS  Google Scholar 

  35. Rossi P, Giansanti F, Boffi A et al (2002) Ca2+ binding to bovine lactoferrin enhances protein stability and influences the release of bacterial lipopolysaccharide. Biochem Cell Biol 80:41–48

    Article  CAS  PubMed  Google Scholar 

  36. Agrios GN (2005) Plant pathology, 5th edn. San Diego, Academic Press

    Google Scholar 

  37. Kovalskaya N, Hammond RW (2009) Expression and functional characterization of the plant antimicrobial snakin-1 and defensin recombinant proteins. Protein Expr Purif 63:12–17

    Article  CAS  PubMed  Google Scholar 

  38. Akhlaghi M, Tanhaiyan A, Shahriari F, Tarighi S (2016) Evaluating the antibacterial effect of the lactoferampin lactoferricin chimeric protein obtained from the domestic livestock’s milk on pathogenic bactria of Pseudomonas Tolaasii. Seminar: Iranian Plant Protection. Accessed from 2016, http://sid.ir/paper/934807/en

  39. Janzen JJ (1970) Economic losses resulting from mastitis. A review J Dairy Sci 53:1151–1160

    Article  CAS  PubMed  Google Scholar 

  40. Chandler CIR (2019) Current accounts of antimicrobial resistance: stabilisation, individualisation and antibiotics as infrastructure. Palgrave Commun 5:1–13

    Article  Google Scholar 

  41. Nakazato G, de Campos TA, Stehling EG et al (2009) Virulence factors of avian pathogenic Escherichia coli (APEC). Pesqui Veterinária Bras 29:479–486

    Article  Google Scholar 

  42. Dheilly A, Bouder A, Le Devendec L et al (2011) Clinical and microbial efficacy of antimicrobial treatments of experimental avian colibacillosis. Vet Microbiol 149:422–429

    Article  CAS  PubMed  Google Scholar 

  43. Cooper KK, Songer JG (2009) Necrotic enteritis in chickens: a paradigm of enteric infection by Clostridium perfringens type A. Anaerobe 15:55–60

    Article  PubMed  Google Scholar 

  44. Khan SH, Iqbal J (2016) Recent advances in the role of organic acids in poultry nutrition. J Appl Anim Res 44:359–369

    Article  CAS  Google Scholar 

  45. Wang S, Zeng X, Yang Q, Qiao S (2016) Antimicrobial peptides as potential alternatives to antibiotics in food animal industry. Int J Mol Sci 17:603

    Article  PubMed  PubMed Central  Google Scholar 

  46. Caspary WF (1992) Physiology and pathophysiology of intestinal absorption. Am J Clin Nutr 55:299S-308S

    Article  CAS  PubMed  Google Scholar 

  47. Choi SC, Ingale SL, Kim JS et al (2013) An antimicrobial peptide-A3: effects on growth performance, nutrient retention, intestinal and faecal microflora and intestinal morphology of broilers. Br Poult Sci 54:738–746

    Article  CAS  PubMed  Google Scholar 

  48. Choi SC, Ingale SL, Kim JS et al (2013) Effects of dietary supplementation with an antimicrobial peptide-P5 on growth performance, nutrient retention, excreta and intestinal microflora and intestinal morphology of broilers. Anim Feed Sci Technol 185:78–84

    Article  CAS  Google Scholar 

  49. Liu T, She R, Wang K et al (2008) Effects of rabbit sacculus rotundus antimicrobial peptides on the intestinal mucosal immunity in chickens. Poult Sci 87:250–254

    Article  CAS  PubMed  Google Scholar 

  50. Bao H, She R, Liu T et al (2009) Effects of pig antibacterial peptides on growth performance and intestine mucosal immune of broiler chickens. Poult Sci 88:291–297

    Article  CAS  PubMed  Google Scholar 

  51. Ohh SH, Shinde PL, Choi JY et al (2010) Effects of potato (Solanum tuberosum I. cv. golden valley) protein on performance, nutrient metabolizability, and cecal microflora in broilers. CABI Databases 74:30–35. https://www.cabidigitallibrary.org/doi/full/10.5555/20103064863

  52. Tang Z, Yin Y, Zhang Y et al (2008) Effects of dietary supplementation with an expressed fusion peptidebovine lactoferricin–lactoferrampin on performance, immune function and intestinal mucosal morphology in pigletsweaned at age 21 d. Br J Nutr 101:998–1005

    Article  PubMed  Google Scholar 

  53. Proctor A, Phillips GJ (2019) Differential effects of bacitracin methylene disalicylate (BMD) on the distal colon and cecal microbiota of young broiler chickens. Front Vet Sci 6:114

    Article  PubMed  PubMed Central  Google Scholar 

  54. Koltes DA, Lester HD, Frost M et al (2017) Effects of bacitracin methylene disalicylate and diet change on gastrointestinal integrity and endotoxin permeability in the duodenum of broiler chicken. BMC Res Notes 10:1–6

    Article  Google Scholar 

  55. Allah Yami H, Tahmoorespur M, M. H. Sekhavati AJ, (2023) Investigation of the inhibitory effects of CLF36 peptide derived from camel lactoferrin on NF-κB signaling pathway in molecular docking simulation (in silico). Iran J Anim Sci Res 15:285–297

    Google Scholar 

  56. Nyati S, Stricker H, Barton KN et al (2023) A phase I clinical trial of oncolytic adenovirus mediated suicide and interleukin-12 gene therapy in patients with recurrent localized prostate adenocarcinoma. PLoS ONE 18:1–22. https://doi.org/10.1371/journal.pone.0291315

    Article  CAS  Google Scholar 

  57. Kanwar JR, Roy K, Patel Y et al (2015) Multifunctional iron bound lactoferrin and nanomedicinal approaches to enhance its bioactive functions. Molecules 20:9703–9731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Boswell CA, Tesar DB, Mukhyala K et al (2010) Effects of charge on antibody tissue distribution and pharmacokinetics. Bioconjug Chem 21:2153–2163

    Article  CAS  PubMed  Google Scholar 

  59. MacDonald TT (2003) The mucosal immune system. Parasite Immunol 25:235–246

    Article  CAS  PubMed  Google Scholar 

  60. Häcker H, Tseng P-H, Karin M (2011) Expanding TRAF function: TRAF3 as a tri-faced immune regulator. Nat Rev Immunol 11:457–468

    Article  PubMed  Google Scholar 

  61. Kim DK, Lillehoj HS, Jang SI et al (2014) Transcriptional profiles of host-pathogen responses to necrotic enteritis and differential regulation of immune genes in two inbreed chicken lines showing disparate disease susceptibility. PLoS ONE 9:e114960

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yang HL, Feng ZQ, Zeng SQ et al (2015) Molecular cloning and expression analysis of TRAF3 in chicken. Genet Mol Res 14:4408–4419

    Article  CAS  PubMed  Google Scholar 

  63. Lee SH, Lillehoj HS, Jang SI et al (2013) Dietary supplementation of young broiler chickens with Capsicum and turmeric oleoresins increases resistance to necrotic enteritis. Br J Nutr 110:840–847

    Article  CAS  PubMed  Google Scholar 

  64. Serhan CN (2014) Pro-resolving lipid mediators are leads for resolution physiology. Nature 510:92–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Leoni G, Neumann PA, Sumagin R et al (2015) Wound repair: role of immune–epithelial interactions. Mucosal Immunol 8:959–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Fasina YO, Lillehoj HS (2019) Characterization of intestinal immune response to Clostridium perfringens infection in broiler chickens. Poult Sci 98:188–198

    Article  CAS  PubMed  Google Scholar 

  67. Kamble NM, Jawale CV, Lee JH (2016) Activation of chicken bone marrow-derived dendritic cells induced by a Salmonella Enteritidis ghost vaccine candidate. Poult Sci 95:2274–2280

    Article  CAS  PubMed  Google Scholar 

  68. Davidson DJ, Currie AJ, Reid GSD et al (2004) The cationic antimicrobial peptide LL-37 modulates dendritic cell differentiation and dendritic cell-induced T cell polarization. J Immunol 172:1146–1156

    Article  CAS  PubMed  Google Scholar 

  69. Muniz LR, Knosp C, Yeretssian G (2012) Intestinal antimicrobial peptides during homeostasis, infection, and disease. Front Immunol 3:310

    Article  PubMed  PubMed Central  Google Scholar 

  70. Kolls JK, McCray PB Jr, Chan YR (2008) Cytokine-mediated regulation of antimicrobial proteins. Nat Rev Immunol 8:829–835

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Johansson MEV, Phillipson M, Petersson J et al (2008) The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. Proc Natl Acad Sci 105:15064–15069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kabat AM, Srinivasan N, Maloy KJ (2014) Modulation of immune development and function by intestinal microbiota. Trends Immunol 35:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Gadde U, Oh ST, Lee YS et al (2017) The effects of direct-fed microbial supplementation, as an alternative to antibiotics, on growth performance, intestinal immune status, and epithelial barrier gene expression in broiler chickens. Probiotics Antimicrob Proteins 9:397–405

    Article  CAS  PubMed  Google Scholar 

  74. Saitoh Y, Suzuki H, Tani K et al (2015) Structural insight into tight junction disassembly by Clostridium perfringens enterotoxin. Science 80(347):775–778

    Article  Google Scholar 

  75. Ulluwishewa D, Anderson RC, McNabb WC et al (2011) Regulation of tight junction permeability by intestinal bacteria and dietary components. J Nutr 141:769–776

    Article  CAS  PubMed  Google Scholar 

  76. Van Itallie CM, Anderson JM (2014) Architecture of tight junctions and principles of molecular composition. Seminars in cell & developmental biology. Elsevier, pp 157–165

    Google Scholar 

  77. Zhang Q, Li Q, Wang C et al (2010) Enteropathogenic Escherichia coli changes distribution of occludin and ZO-1 in tight junction membrane microdomains in vivo. Microb Pathog 48:28–34

    Article  PubMed  Google Scholar 

  78. Ugalde-Silva P, Gonzalez-Lugo O, Navarro-Garcia F (2016) Tight junction disruption induced by type 3 secretion system effectors injected by enteropathogenic and enterohemorrhagic Escherichia coli. Front Cell Infect Microbiol 6:87

    Article  PubMed  PubMed Central  Google Scholar 

  79. Simonovic I, Rosenberg J, Koutsouris A, Hecht G (2000) Enteropathogenic Escherichia coli dephosphorylates and dissociates occludin from intestinal epithelial tight junctions. Cell Microbiol 2:305–315

    Article  CAS  PubMed  Google Scholar 

  80. Yu H, Ding X, Shang L et al (2018) Protective ability of biogenic antimicrobial peptide microcin J25 against enterotoxigenic Escherichia coli-induced intestinal epithelial dysfunction and inflammatory responses IPEC-J2 cells. Front Cell Infect Microbiol 8:242

    Article  PubMed  PubMed Central  Google Scholar 

  81. Yi H, Zhang L, Gan Z et al (2016) High therapeutic efficacy of cathelicidin-WA against postweaning diarrhea via inhibiting inflammation and enhancing epithelial barrier in the intestine. Sci Rep 6:25679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Yi H, Hu W, Chen S et al (2017) Cathelicidin-WA improves intestinal epithelial barrier function and enhances host defense against enterohemorrhagic Escherichia coli O157: H7 infection. J Immunol 198:1696–1705

    Article  CAS  PubMed  Google Scholar 

  83. Kelly CJ, Zheng L, Campbell EL et al (2015) Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function. Cell Host Microbe 17:662–671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Diao H, Jiao AR, Yu B et al (2019) Gastric infusion of short-chain fatty acids can improve intestinal barrier function in weaned piglets. Genes Nutr 14:1–16

    Article  CAS  Google Scholar 

  85. Hu F, Wu Q, Song S et al (2016) Antimicrobial activity and safety evaluation of peptides isolated from the hemoglobin of chickens. BMC Microbiol 16:1–10

    Article  Google Scholar 

  86. Lv F, Liang H, Yuan Q, Li C (2011) In vitro antimicrobial effects and mechanism of action of selected plant essential oil combinations against four food-related microorganisms. Food Res Int 44:3057–3064

    Article  CAS  Google Scholar 

  87. Moghaddam M, Mehdizadeh L, Mirzaei Najafgholi H, Ghasemi Pirbalouti A (2018) Chemical composition, antibacterial and antifungal activities of seed essential oil of Ferulago angulata. Int J food Prop 21:158–170

    Article  CAS  Google Scholar 

  88. Le C-F, Fang C-M, Sekaran SD (2017) Intracellular targeting mechanisms by antimicrobial peptides. Antimicrob Agents Chemother 61:10–1128

    Article  Google Scholar 

  89. Jahani S, Shakiba A, Jahani L (2015) The antimicrobial effect of lactoferrin on gram-negative and gram-positive bacteria. Int J Infect 2(3):e27954. https://doi.org/10.17795/iji27594

  90. Mamat U, Wilke K, Bramhill D et al (2015) Detoxifying Escherichia coli for endotoxin-free production of recombinant proteins. Microb Cell Fact 14:1–15

    CAS  Google Scholar 

  91. de Souza CE, Sousa DA, Viana JC et al (2014) The use of versatile plant antimicrobial peptides in agribusiness and human health. Peptides 55:65–78

    Article  Google Scholar 

  92. Bermúdez-Humarán LG, Kharrat P, Chatel J-M, Langella P (2011) Lactococci and lactobacilli as mucosal delivery vectors for therapeutic proteins and DNA vaccines. Microb Cell Fact 10:1–10

    Article  Google Scholar 

  93. Octaviani CP, Goto H, Kawaoka Y (2011) Reassortment between seasonal H1N1 and pandemic (H1N1) 2009 influenza viruses is restricted by limited compatibility among polymerase subunits. J Virol 85:8449–8452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Yang W-C, Hsu T-C, Cheng K-C, Liu J-R (2017) Expression of the Clonostachys rosea lactonohydrolase gene by Lactobacillus reuteri to increase its zearalenone-removing ability. Microb Cell Fact 16:1–11

    Google Scholar 

  95. Song AA-L, In LLA, Lim SHE, Rahim RA (2017) A review on Lactococcus lactis: from food to factory. Microb Cell Fact 16:1–15

    CAS  Google Scholar 

  96. Liu S, Li Y, Xu Z, Wang Y (2010) Immune responses elicited in mice with recombinant Lactococcus lactis expressing F4 fimbrial adhesin FaeG by oral immunization. Vet Res Commun 34:491–502

    Article  PubMed  Google Scholar 

  97. Sarfo K, Moorhead GBG, Turner RJ (2003) A novel procedure for separating small peptides on polyacrylamide gels. Lett Pept Sci 10:127–133

    Article  Google Scholar 

  98. Andreoletti O, Budka H, Buncic S et al (2008) Microbiological risk assessment in feedingstuffs for food-producing animals Scientific Opinion of the Panel on Biological Hazards. EFSA J 720:1–84

    Google Scholar 

  99. Okelo PO, Wagner DD, Carr LE et al (2006) Optimization of extrusion conditions for elimination of mesophilic bacteria during thermal processing of animal feed mash. Anim Feed Sci Technol 129:116–137

    Article  Google Scholar 

  100. Uhlig T, Kyprianou T, Martinelli FG et al (2014) The emergence of peptides in the pharmaceutical business: from exploration to exploitation. EuPA Open Proteom 4:58–69

    Article  CAS  Google Scholar 

  101. Gower E, Estes C, Blach S et al (2014) Global epidemiology and genotype distribution of the hepatitis C virus infection. J Hepatol 61:S45–S57

    Article  PubMed  Google Scholar 

  102. Iyengar S, Tay-Teo K, Vogler S et al (2016) Prices, costs, and affordability of new medicines for hepatitis C in 30 countries: an economic analysis. PLoS Med 13:e1002032

    Article  PubMed  PubMed Central  Google Scholar 

  103. Shah N, Pierce T, Kowdley KV (2013) Review of direct-acting antiviral agents for the treatment of chronic hepatitis C. Expert Opin Investig Drugs 22:1107–1121

    Article  CAS  PubMed  Google Scholar 

  104. Bräu N (2013) Evaluation of the hepatitis C virus–infected patient: the initial encounter. Clin Infect Dis 56:853–860

    Article  PubMed  Google Scholar 

  105. Skalickova S, Heger Z, Krejcova L et al (2015) Perspective of use of antiviral peptides against influenza virus. Viruses 7:5428–5442

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Zaiou M (2007) Multifunctional antimicrobial peptides: therapeutic targets in several human diseases. J Mol Med 85:317–329

    Article  CAS  PubMed  Google Scholar 

  107. Redwan EM, El-Fakharany EM, Uversky VN, Linjawi MH (2014) Screening the anti infectivity potentials of native N-and C-lobes derived from the camel lactoferrin against hepatitis C virus. BMC Complement Altern Med 14:1–16

    Article  Google Scholar 

  108. Tomita M, Bellamy W, Takase M et al (1991) Potent antibacterial peptides generated by pepsin digestion of bovine lactoferrin. J Dairy Sci 74:4137–4142

    Article  CAS  PubMed  Google Scholar 

  109. Keck Z, Angus AGN, Wang W et al (2014) Non-random escape pathways from a broadly neutralizing human monoclonal antibody map to a highly conserved region on the hepatitis C virus E2 glycoprotein encompassing amino acids 412–423. PLoS Pathog 10:e1004297

    Article  PubMed  PubMed Central  Google Scholar 

  110. Azghandi M, Tahmoorespur M, Sekhavati MH (2022) Comparison of antiviral effect of camel lactoferrin peptide (CLF36) and new generation drugs against hepatitis C virus. Agric Biotechnol J 14:21–44

    Google Scholar 

  111. Hamadalahmad A, Azghandi M, Pirkhezranian Z, Tahmoorespur M (2020) In silico study of dynamic level interaction between CLF36 peptide and coronavirus surface protein in Bovine coronaviruses. DYSONA-Life Sci 1:91–95

    Google Scholar 

  112. Shahamiri M, Tahmoorespur M, Azghandi M (2020) Bioinformatics study of the interaction between six recombinant camel lactoferrin peptides and bovine rotavirus’ surface proteins. J Rumin Res 8:1–16

    Google Scholar 

  113. Chan L, Alizadeh K, Alizadeh K et al (2021) Review of influenza virus vaccines: the qualitative nature of immune responses to infection and vaccination is a critical consideration. Vaccines 9:979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Morovati S, Ghorbani A, Mohammadi A, Samarfard S (2023) Quasispecies and viral gene expression analysis of the influenza A virus H1N1 strains isolated from human, mallard duck and pig. Biologia 79:791–802. https://doi.org/10.1007/s11756-023-01564-7

    Article  CAS  Google Scholar 

  115. Koszalka P, Tilmanis D, Hurt AC (2017) Influenza antivirals currently in late-phase clinical trial. Influenza Other Respi Viruses 11:240–246. https://doi.org/10.1111/irv.12446

    Article  CAS  Google Scholar 

  116. Hussain M, Galvin HD, Haw TY et al (2017) Drug resistance in influenza A virus: the epidemiology andmanagement. Infect Drug Resist 10:121–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Sauerbrei A, Haertl A, Brandstaedt A et al (2006) Utilization of the embryonated egg for in vivo evaluation of the anti-influenza virus activity of neuraminidase inhibitors. Med Microbiol Immunol 195:65–71

    Article  CAS  PubMed  Google Scholar 

  118. Sala A, Ardizzoni A, Ciociola T et al (2019) Antiviral activity of synthetic peptides derived from physiological proteins. Intervirology 61:166–173

    Article  Google Scholar 

  119. De Angelis M, Casciaro B, Genovese A et al (2021) Temporin G, an amphibian antimicrobial peptide against influenza and parainfluenza respiratory viruses: insights into biological activity and mechanism of action. FASEB J 35:e21358

    Article  PubMed  Google Scholar 

  120. Özbil M (2019) Computational investigation of influenza A virus M2 protein inhibition mechanism by ion channel blockers. Turkish J Chem 43:335–351

    Article  Google Scholar 

  121. Rosenberg MR, Casarotto MG (2010) Coexistence of two adamantane binding sites in the influenza A M2 ion channel. Proc Natl Acad Sci 107:13866–13871

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Sahebnazar A, Tahmoorepur M, Sekhavati MH (2021) Molecular docking CLF36 peptide against avian influenza virus subtype H5N8 antigenes. Vet Res Biol Prod 34:54–65

    Google Scholar 

  123. Yang J, Li M, Shen X, Liu S (2013) Influenza A virus entry inhibitors targeting the hemagglutinin. Viruses 5:352–373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Masoudi R, Mohammadi A, Morovati S, Heidari AA, Asad-Sangabi M (2023) Induction of apoptosis in colorectal cancer cells by matrix protein of PPR virus as a novel anti-cancer agent. Int J Biol Macromol 245:125536. https://doi.org/10.1016/j.ijbiomac.2023.125536

  125. Morovati S, Mohammadi A, Masoudi R, Heidari AA, Asad Sangabi M (2023) The power of mumps virus: matrix protein activates apoptotic pathways in human colorectal cell lines. PLoS One 18(12):e0295819. https://doi.org/10.1371/journal.pone.0295819

  126. Harris F, Dennison SR, Singh J, Phoenix DA (2013) On the selectivity and efficacy of defense peptides with respect to cancer cells. Med Res Rev 33:190–234

    Article  CAS  PubMed  Google Scholar 

  127. Riedl S, Rinner B, Asslaber M et al (2011) In search of a novel target—phosphatidylserine exposed by non-apoptotic tumor cells and metastases of malignancies with poor treatment efficacy. Biochim Biophys Acta (BBA)-Biomembranes 1808:2638–2645

    Article  CAS  PubMed  Google Scholar 

  128. Tanhaeian A, Jaafari MR, Ahmadi FS et al (2019) Secretory expression of a chimeric peptide in Lactococcus lactis: assessment of its cytotoxic activity and a deep view on its interaction with cell-surface glycosaminoglycans by molecular modeling. Probiotics Antimicrob Proteins 11:1034–1041

    Article  CAS  PubMed  Google Scholar 

  129. Salanti A, Clausen TM, Agerbæk MØ et al (2015) Targeting human cancer by a glycosaminoglycan binding malaria protein. Cancer Cell 28:500–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Kamerling JP, Boons G-J (2007) Cell glycobiology and development: health and disease in glycomedicine. Elsevier

    Google Scholar 

  131. Christianson HC, Belting M (2014) Heparan sulfate proteoglycan as a cell-surface endocytosis receptor. Matrix Biol 35:51–55

    Article  CAS  PubMed  Google Scholar 

  132. Oliver SP, Jayarao BM, Almeida RA (2005) Foodborne pathogens in milk and the dairy farm environment: food safety and public health implications. Foodb Pathog Dis 2:115–129

    Article  CAS  Google Scholar 

  133. Steidler L (2003) Genetically engineered probiotics. Best Pract Res Clin Gastroenterol 17:861–876

    Article  PubMed  Google Scholar 

  134. van de Guchte M, Kok J, Venema G (1992) Gene expression in Lactococcus lactis. FEMS Microbiol Rev 8:73–92

    Article  PubMed  Google Scholar 

  135. Steidler L, Hans W, Schotte L et al (2000) Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 80(289):1352–1355

    Article  Google Scholar 

  136. McKay LL, Baldwin KA (1990) Applications for biotechnology: present and future improvements in lactic acid bacteria. FEMS Microbiol Rev 7:3–14

    Article  CAS  PubMed  Google Scholar 

  137. Bermúdez-Humarán LG, Aubry C, Motta J-P et al (2013) Engineering lactococci and lactobacilli for human health. Curr Opin Microbiol 16:278–283

    Article  PubMed  Google Scholar 

  138. Birollo GA, Reinheimer JA, Vinderola CG (2000) Viability of lactic acid microflora in different types of yoghurt. Food Res Int 33:799–805

    Article  Google Scholar 

  139. Jørgensen CM, Vrang A, Madsen SM (2014) Recombinant protein expression in Lactococcus lactis using the P170 expression system. FEMS Microbiol Lett 351:170–178

    Article  PubMed  Google Scholar 

  140. Wakabayashi H, Yamauchi K, Kobayashi T et al (2009) Inhibitory effects of lactoferrin on growth and biofilm formation of Porphyromonas gingivalis and Prevotella intermedia. Antimicrob Agents Chemother 53:3308–3316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Ammons MCB, Ward LS, Fisher ST et al (2009) In vitro susceptibility of established biofilms composed of a clinical wound isolate of Pseudomonas aeruginosa treated with lactoferrin and xylitol. Int J Antimicrob Agents 33:230–236

    Article  CAS  PubMed  Google Scholar 

  142. Singh PK, Parsek MR, Greenberg EP, Welsh MJ (2002) A component of innate immunity prevents bacterial biofilm development. Nature 417:552–555

    Article  CAS  PubMed  Google Scholar 

  143. Jeong BC, Hawes C, Bonthrone KM, Macaskie LE (1997) Iron acquisition from transferrin and lactoferrin by Pseudomonas aeruginosa pyoverdin. Microbiology 143:2497–2507

    Article  CAS  PubMed  Google Scholar 

  144. Safaeian L, Zabolian H (2014) Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. Int Sch Res Not 943523. https://doi.org/10.1155/2014/943523

  145. El-Loly MM, Mahfouz MB (2011) Lactoferrin in relation to biological functions and applications: A. Int J Dairy Sci 6:79–111

    Article  CAS  Google Scholar 

  146. Hartmann M, Berditsch M, Hawecker J et al (2010) Damage of the bacterial cell envelope by antimicrobial peptides gramicidin S and PGLa as revealed by transmission and scanning electron microscopy. Antimicrob Agents Chemother 54:3132–3142

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Park CB, Kim HS, Kim SC (1998) Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem Biophys Res Commun 244:253–257

    Article  CAS  PubMed  Google Scholar 

  148. Tang Y-L, Shi Y-H, Zhao W et al (2009) Interaction of MDpep9, a novel antimicrobial peptide from Chinese traditional edible larvae of housefly, with Escherichia coli genomic DNA. Food Chem 115:867–872

    Article  CAS  Google Scholar 

  149. Yan J, Wang K, Dang W et al (2013) Two hits are better than one: membrane-active and DNA binding-related double-action mechanism of NK-18, a novel antimicrobial peptide derived from mammalian NK-lysin. Antimicrob Agents Chemother 57:220–228

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Sim S, Wang P, Beyer BN et al (2017) Investigating the nucleic acid interactions of histone-derived antimicrobial peptides. FEBS Lett 591:706–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pirkhezranian Z, Tahmoorespur M, Daura X et al (2020) Interaction of camel Lactoferrin derived peptides with DNA: a molecular dynamics study. BMC Genomics 21:1–14

    Article  Google Scholar 

  152. Coconnier M-H, Lievin V, Hemery E, Servin AL (1998) Antagonistic activity against Helicobacter infection in vitro and in vivo by the human Lactobacillus acidophilus strain LB. Appl Environ Microbiol 64:4573–4580

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Fadli M, Saad A, Sayadi S et al (2012) Antibacterial activity of Thymus maroccanus and Thymus broussonetii essential oils against nosocomial infection–bacteria and their synergistic potential with antibiotics. Phytomedicine 19:464–471

    Article  CAS  PubMed  Google Scholar 

  154. Ghorbankhani GA, Mohammadi A, Kazemipour N et al (2023) Apoptotic activity of Newcastle disease virus in comparison with Nisin A in MDA-MB-231 cell line. Vet Res Forum 14:29–37

    PubMed  PubMed Central  Google Scholar 

  155. Otvos LJ (2016) Immunomodulatory effects of anti-microbial peptides. Acta Microbiol Immunol Hung 63:257–277. https://doi.org/10.1556/030.63.2016.005

    Article  CAS  PubMed  Google Scholar 

  156. Rodrigues G, Silva GGO, Buccini DF et al (2019) Bacterial proteinaceous compounds with multiple activities toward cancers and microbial infection. Front Microbiol 10:1690. https://doi.org/10.3389/fmicb.2019.01690

    Article  PubMed  PubMed Central  Google Scholar 

  157. Rashidian Z, Roshanak S, Sekhavati MH, Javadmanesh A (2023) Synergistic effects of nisin and CLF36 antimicrobial peptides in vitro. Vet Res Biol Prod 36:44–50

    Google Scholar 

  158. Jafarzadeh M, Meamar N, Mohsenzadeh M, Razmyar J (2023) Identification of methicillin-resistant Staphylococcus aureus in poultry meat portions using multiplex PCR. J Poult Sci Avian Dis 1:13–19

    Article  Google Scholar 

  159. Stapleton PD, Taylor PW (2002) Methicillin resistance in Staphylococcus aureus: mechanisms and modulation. Sci Prog 85:57–72

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Zeng D, Debabov D, Hartsell TL et al (2016) Approved glycopeptide antibacterial drugs: mechanism of action and resistance. Cold Spring Harb Perspect Med 6:a026989. https://doi.org/10.1101/cshperspect.a026989

  161. Maisetta G, Mangoni ML, Esin S et al (2009) In vitro bactericidal activity of the N-terminal fragment of the frog peptide esculentin-1b (Esc 1–18) in combination with conventional antibiotics against Stenotrophomonas maltophilia. Peptides 30:1622–1626

    Article  CAS  PubMed  Google Scholar 

  162. Regmi S, Choi YH, Choi YS et al (2017) Antimicrobial peptide isolated from Bacillus amyloliquefaciens K14 revitalizes its use in combinatorial drug therapy. Folia Microbiol (Praha) 62:127–138

    Article  CAS  PubMed  Google Scholar 

  163. Shahidi F, Roshanak S, Pirkhezranian Z, Sekhavati M, Soradeghi Toopkanloo A (2021) Investigation of the antibacterial activity of lactoferrin chimera and its synergistic effect with antibiotics gentamicin, cefazolin, and ceftazidime against pathogenic Gram-negative bacteria. Iran J Infect Dis Trop Med 26:16–27

    Google Scholar 

  164. Wu X, Li Z, Li X et al (2017) Synergistic effects of antimicrobial peptide DP7 combined with antibiotics against multidrug-resistant bacteria. Drug Des Devel Ther 11:939–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Roshanak S, Shahidi F, Soradeghi Toopkanloo A et al (2022) Evaluation of antibacterial activity of cLFchimera and its synergistic potential with vancomycin against methicillin-resistant Staphylococcus aureus. Iran J Vet Sci Technol 14:1–8

    Google Scholar 

  166. Reyes-Cortes R, Acosta-Smith E, Mondragón-Flores R et al (2017) Antibacterial and cell penetrating effects of LFcin17–30, LFampin265–284, and LF chimera on enteroaggregative Escherichia coli. Biochem Cell Biol 95:76–81

    Article  CAS  PubMed  Google Scholar 

  167. Pirkhezranian Z, Tahmoorespur M, Monhemi H, Sekhavati MH (2020) Computational peptide engineering approach for selection the best engendered camel Lactoferrin-derive peptide with potency to interact with DNA. Int J Pept Res Ther 26:2203–2212

    Article  CAS  Google Scholar 

  168. Nguyen LT, Haney EF, Vogel HJ (2011) The expanding scope of antimicrobial peptide structures and their modes of action. Trends Biotechnol 29:464–472. https://doi.org/10.1016/j.tibtech.2011.05.001

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

M.H.S., A.A.B., and J.R. had the idea for the article. S.M. and A.A.B. performed the literature search and data analysis. S.M. drafted the work. M.H.S. and J.R. revised the manuscript. All authors reviewed and approved the final manuscript.

Corresponding authors

Correspondence to Mohammad Hadi Sekhavati or Jamshid Razmyar.

Ethics declarations

Competing Interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morovati, S., Baghkheirati, A.A., Sekhavati, M.H. et al. A Review on cLF36, a Novel Recombinant Antimicrobial Peptide-Derived Camel Lactoferrin. Probiotics & Antimicro. Prot. (2024). https://doi.org/10.1007/s12602-024-10285-5

Download citation

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12602-024-10285-5

Keywords

Navigation