Skip to main content

Advertisement

Log in

Utilization of the embryonated egg for in vivo evaluation of the anti-influenza virus activity of neuraminidase inhibitors

  • Original Investigation
  • Published:
Medical Microbiology and Immunology Aims and scope Submit manuscript

Abstract

Previous studies have shown that embryonated egg provides a convenient and easy to use system for in vivo screening of anti-influenza virus inhibitors. However, it is not known whether this model is suitable for testing neuraminidase (NA) inhibitors, too. Therefore, the present study describes the evaluation of the ion-channel blockers amantadine and rimantadine in comparison with the NA inhibitors oseltamivir and zanamivir by using the influenza A virus hen’s egg model. The treatment was started immediately before or after the challenge dose was placed on the chorioallantoic membrane (CAM). Differences between the survival rate of treated and untreated chick embryos infected with influenza A virus were analyzed statistically. As result, the survival rate of chick embryos could be significantly increased when the treatment with amantadine, rimantadine, oseltamivir, or zanamivir was started before the CAM was inoculated with one egg infective dose 50% (EID50) influenza A virus. When the drugs were administered shortly after viral inoculation, significant antiviral efficacy was shown for rimantadine, oseltamivir, and zanamivir. Antiviral efficacy could be demonstrated exclusively for both oseltamivir and zanamivir after the embryos were infected with higher challenge doses of 102 EID50influenza A virus. In conclusion, the NA inhibitors oseltamivir and zanamivir have a significantly better antiviral activity against influenza A virus than amantadine and rimantadine tested in embryonated hen’s eggs. Therefore, this model can be a valuable alternative approach for in vivo pre-testing anti-influenza virus activity of NA inhibitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bantia S, Parker CD, Ananth SL, Horn LC, Andries K, Chand P, Kotian PL, Dehghani A, El-Kattan Y, Lin T, Hutchinson TL, Montgomery JA, Kellog DL, Babu YS (2001) Comparison of anti-influenza virus activity of RWJ-270201 with those of oseltamivir and zanamivir. Antimicrob Agents Chemother 45:1162–1167

    Article  PubMed  CAS  Google Scholar 

  2. Bean WJ, Kawaoka Y, Wood JM, Pearson JE, Webster RG (1985) Characterization of virulent and avirulent A/Chicken/Pennsylvania/83 influenza A viruses: potential role of defective interfering RNAs in nature. J Virol 54:151–160

    PubMed  CAS  Google Scholar 

  3. Bolls M, Ridell RJ, Worden AN (1983) Animals and alternatives in toxicity testing. Academic, London

    Google Scholar 

  4. Dunn CJ, Goa KL (1999) Zanamivir: a review of its use in influenza. Drugs 58:761–784

    Article  PubMed  CAS  Google Scholar 

  5. Farage-Elawar M (1991) Development of esterase activities in the chicken before and after hatching. Neurotoxicol Teratol 13:147–152

    Article  PubMed  CAS  Google Scholar 

  6. Fleming DM (2001) Managing influenza: amantadine, rimantadine and beyond. Int J Clin Pract 55:189–195

    PubMed  CAS  Google Scholar 

  7. Grunert RR, McGahern JW, Davies WL (1965) The in vivo antiviral activity of 1-adamantan-amine (amantadine). I. Prophylactic and therapeutic activity against influenza viruses. Virology 26:262–269

    Article  PubMed  CAS  Google Scholar 

  8. Gubareva LV, Kaiser L, Hayden FG (2000) Influenza virus neuraminidase inhibitors. Lancet 355:827–835

    Article  PubMed  CAS  Google Scholar 

  9. Haertl A, Sauerbrei A, Stelzner A, Wutzler P (2004) Influenza infection of the embryonated hen’s egg—an alternative model for in vivo evaluation of antiviral compounds. Arzneimittelforschung 54:130–134

    CAS  Google Scholar 

  10. He G, Massarella J, Ward P (1999) Clinical pharmacokinetics of the prodrug oseltamivir and its active metabolite Ro 64–0802. Clin Pharmacokinet 37:471–484

    Article  PubMed  CAS  Google Scholar 

  11. Horn M, Vollandt R (1995) Multiple tests und Auswahlverfahren. Gustav Fischer, Stuttgart

    Google Scholar 

  12. Ito T, Suzuki Y, Takada A, Kawamoto A, Otsuki K, Masuda H, Yamada M, Suzuki T, Kida H, Kawaoka Y (1997) Differences in sialic acid-galatose linkages in the chicken egg amnion and allantois influence human influenza virus receptor specificity and variant selection. J Virol 71:3357–3362

    PubMed  CAS  Google Scholar 

  13. Katz JM, Naeve CW, Webster RG (1987) Host cell-mediated variation in H3N2 influenza viruses. Virology 156:386–395

    Article  PubMed  CAS  Google Scholar 

  14. McClellan K, Perry CM (2001) Oseltamivir: a review of its use in influenza. Drugs 61:263–283

    Article  PubMed  CAS  Google Scholar 

  15. Mendel DB, Tai CY, Escarpe PA, Li W, Sidwell RW, Huffman JH, Sweet C, Jakeman KJ, Merson J, Lacy SA, Lew W, Williams MA, Zhang L, Chen MS, Bischofberger N, Kim CU (1998) Oral administration of a prodrug of the influenza virus neuraminidase inhibitor GS 4071 protects mice and ferrets against influenza infection. Antimicrob Agents Chemother 42:640–646

    PubMed  CAS  Google Scholar 

  16. Oxford JS, Bossuyt S, Balasingam S, Mann A, Novelli P, Lambkin R (2003) Treatment of epidemic and pandemic influenza with neuraminidase and M2 proton channel inhibitors. Clin Microbiol Infect 9:1–14

    Article  PubMed  CAS  Google Scholar 

  17. Sauerbrei A, Ulbricht A, Wutzler P (2003) Semi-quantitative detection of viral RNA in influenza A virus-infected mice for evaluation of antiviral compounds. Antiviral Res 58:81–87

    Article  PubMed  CAS  Google Scholar 

  18. Schild GC, Oxford JS, De Jong JC, Webster RG (1983) Evidence for host-cell selection of influenza virus antigenic variants. Nature 303:706–709

    Article  PubMed  CAS  Google Scholar 

  19. Schmidtke M, Knorre C, Blei L, Stelzner A, Birch-Hirschfeld E (1998) Penetration and antiviral activity of coxsackie virus B3-specific phosphorothioate oligodeoxynucleotides (PS-ODN). Nucleosides Nucleotides 17:1557–1566

    Article  CAS  Google Scholar 

  20. Sidwell RW (1999) The mouse model of influenza virus infection. In: Zak O, Sande MA (eds) Handbook of animal models of infection. Experimental models in antimicrobial chemotherapy. Academic, San Diego, pp 981–987

    Chapter  Google Scholar 

  21. Sidwell RW, Huffman JH, Barnard DL, Bailey KW, Wong MH, Morrison A, Syndergaard T, Kim CU (1998) Inhibition of influenza virus infections in mice by GS4104, an orally effective influenza virus neuraminidase inhibitor. Antiviral Res 37:107–120

    Article  PubMed  CAS  Google Scholar 

  22. Sidwell RW, Smee DF (2000) in vitro and in vivo assay systems for study of influenza virus inhibitors. Antiviral Res 48:1–16

    Article  PubMed  CAS  Google Scholar 

  23. Stephen EL, Dominik JW, Moe JB, Spertzel RO, Walker JS (1975) Treatment of influenza infection of mice by using rimantadine hydrochlorides by aerosol and intraperitoneal routes. Antimicrob Agents Chemother 8:154–158

    PubMed  CAS  Google Scholar 

  24. Thompson CI, Barclay WS, Zambon MC (2004) Canges in in vitro susceptibility of influenza A H3N2 viruses to a neuraminidase inhibitor drug during evolution in the human host. J Antimicrob Chemother 53:759–765

    Article  PubMed  CAS  Google Scholar 

  25. Tisdale M (2000) Monitoring of viral susceptibility: new challenges with the development of influenza NA inhibitors. Rev Med Virol 10:45–55

    Article  PubMed  CAS  Google Scholar 

  26. Watanabe W, Konno K, Ijichi K, Inoue H, Yokota T, Shigeta S (1994) MTT colorimetric assay system for the screening of anti-orthomyxo- and anti-paramyxoviral agents. J Virol Methods 48:257–265

    Article  PubMed  CAS  Google Scholar 

  27. Webster RG, Kawaoka Y, Bean WJ, Beard CW, Brugh M (1985) Chemotherapy and vaccination: a possible strategy for the control of highly virulent influenza virus. J Virol 55:173–176

    PubMed  CAS  Google Scholar 

  28. Woods JM, Bethell RC, Coates JA, Healy N, Hiscox S, Pearson BA, Ryan DM, Ticehurst J, Tilling J, Walcott SM, Penn CR (1993) 4-Guanidino-2,4-dideoxy-2,3-dehydro-N-acethylneuraminic acid is a highly effective inhibitor both of the sialidase (neuraminidase) and of growth of a wide range of influenza A and B viruses in vitro. Antimicrob Agents Chemother 37:1473–1479

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sauerbrei.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sauerbrei, A., Haertl, A., Brandstaedt, A. et al. Utilization of the embryonated egg for in vivo evaluation of the anti-influenza virus activity of neuraminidase inhibitors. Med Microbiol Immunol 195, 65–71 (2006). https://doi.org/10.1007/s00430-005-0002-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00430-005-0002-x

Keywords

Navigation