Skip to main content
Log in

Antiobesity Effect of Novel Probiotic Strains in a Mouse Model of High-Fat Diet–Induced Obesity

  • Published:
Probiotics and Antimicrobial Proteins Aims and scope Submit manuscript

Abstract

Obesity is one of the major causes of the development of metabolic diseases, particularly cardiovascular diseases and type-2 diabetes mellitus. Increased lipid accumulation and abnormal adipocyte growth, which is an increase in cell numbers and differentiation, have been documented as major pathological characteristics of obesity. Thus, the inhibition of adipogenic differentiation prevents and suppresses obesity. Recently, specific probiotic strains have been known to regulate lipid metabolism in vitro and/or in vivo. Previously, we demonstrated that Lactobacillus johnsonni 3121 and Lactobacillus rhamnosus 86 could act as novel probiotic strains and reduce cholesterol levels. Moreover, both strains significantly reduced lipid accumulation and inhibited adipocyte differentiation by downregulating the adipogenic transcription factor in 3T3-L1 adipocytes. Therefore, L. johnsonni 3121 and L. rhamnosus 86 were selected for in vivo evaluation of their anti-obesity effects using a high-fat diet-induced obese mouse model. Daily oral administration of L. johnsonni 3121 and L. rhamnosus 86 for 12 weeks significantly improved serum lipid profile and downregulated the expression of genes related to adipogenesis and lipogenesis in epididymal white adipose tissue of high-fat diet fed obese mice (p < 0.05). Fecal analysis also suggested that the two probiotic strains could normalize the altered obesity–related gut microbiota in high-fat diet–fed obese mice. These results collectively demonstrate that oral administration of L. johnsonni 3121 and L. rhamnosus 86 could prevent obesity, thereby improving metabolic health.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Ballini A, Scacco S, Boccellino M, Santacroce L, Arrigoni R (2020) Microbiota and obesity: where are we now? Biol 9(12):415. https://doi.org/10.3390/biology9120415

    Article  CAS  Google Scholar 

  2. Diotallevi C, Fava F, Gobbetti M, Tuohy K (2020) Healthy dietary patterns to reduce obesity-related metabolic disease: polyphenol-microbiome interactions unifying health effects across geography. Curr Nutr Metab Care 23(6):437–444. https://doi.org/10.1097/MCO.0000000000000697

    Article  Google Scholar 

  3. Alberti KGMM, Zimmet P, Shaw J (2005) The metabolic syndrome—a new worldwide definition. Lancet 366(9491):1059–1062. https://doi.org/10.1016/s0140-6736(05)67402-8

    Article  PubMed  Google Scholar 

  4. Camp HS, Ren D, Leff T (2002) Adipogenesis and fat-cell function in obesity and diabetes. Trends Mol Med 8(9):442–447. https://doi.org/10.1016/S1471-4914(02)02396-1

    Article  CAS  PubMed  Google Scholar 

  5. Caricilli AM, Saad MJA (2014) Gut microbiota composition and its effects on obesity and insulin resistance. Curr Opin Clin Nutr Metab Care 17(4):312–318. https://doi.org/10.1097/MCO.0000000000000067

    Article  CAS  PubMed  Google Scholar 

  6. Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Human gut microbes associated with obesity. Nat 444(7122):1022–1023. https://doi.org/10.1038/4441022a

    Article  CAS  Google Scholar 

  7. Backhed F, Crawford PA (2010) Coordinated regulation of the metabolome and lipidome at the host-microbial interface. Biochim Biophys Acta 1801(3):240–245. https://doi.org/10.1016/j.bbalip.2009.09.009

  8. Turnbaugh PJ, Backhed F, Fulton L, Gordon JI (2008) Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3(4):213–223. https://doi.org/10.1016/j.chom.2008.02.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nat 444(7122):1027–1031. https://doi.org/10.1038/nature05414

    Article  Google Scholar 

  10. Vrieze A, Van Nood E, Holleman F, Salojarvi J, Kootte RS, Bartelsman JF, Dallinga-Thie GM, Ackermans MT, Serlie MJ, Oozeer R, Derrien M, Druesne A, Van Hylckama Vlieg JE, Bloks VW, Groen AK, Heilig HG, Zoetendal EG, Stroes ES, de Vos WM, Hoekstra JB, Nieuwdorp M (2012) Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterol 143(4):913–916 e917. https://doi.org/10.1053/j.gastro.2012.06.031

  11. Hill C, Guarner F, Reid G, Gibson GR, Merenstein DJ, Pot B, Morelli L, Canani RB, Flint HJ, Salminen S, Calder PC, Sanders ME (2014) Expert consensus document. The International Scientific Association for Probiotics and Prebiotics consensus statement on the scope and appropriate use of the term probiotic. Nat Rev Gastroenterol Hepatol 11(8):506–514. https://doi.org/10.1038/nrgastro.2014.66

  12. Delzenne NM, Neyrinck AM, Backhed F, Cani PD (2011) Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat Rev Endocrinol 7(11):639–646. https://doi.org/10.1038/nrendo.2011.126

    Article  CAS  PubMed  Google Scholar 

  13. Abenavoli L, Scarpellini E, Colica C, Boccuto L, Salehi B, Sharifi-Rad J, Aiello V, Romano B, De Lorenzo A, Izzo AA, Capasso R (2019) Gut microbiota and obesity: a role for probiotics. Nutr 11(11):2690. https://doi.org/10.3390/nu11112690

    Article  CAS  Google Scholar 

  14. Aihara K, Kajimoto O, Hirata H, Takahashi R, Nakamura Y (2005) Effect of powdered fermented milk with Lactobacillus helveticus on subjects with high-normal blood pressure or mild hypertension. J Am Coll Nutr 24(4):257–265. https://doi.org/10.1080/07315724.2005.10719473

    Article  PubMed  Google Scholar 

  15. Park YH, Kim JG, Shin YW, Kim SH, Whang KY (2007) Effect of dietary inclusion of Lactobacillus acidophilus ATCC 43121 on cholesterol metabolism in rats. J Microbiol Biotechnol 17(4):655–662

    CAS  PubMed  Google Scholar 

  16. Rafter J (2004) The effects of probiotics on colon cancer development. Nutr Res Rev 17(2):277–284. https://doi.org/10.1079/NRR200484

    Article  PubMed  Google Scholar 

  17. Baken KA, Ezendam J, Gremmer ER, de Klerk A, Pennings JL, Matthee B, Peijnenburg AA, van Loveren H (2006) Evaluation of immunomodulation by Lactobacillus casei Shirota: immune function, autoimmunity and gene expression. Int J Food Microbiol 112(1):8–18. https://doi.org/10.1016/j.ijfoodmicro.2006.06.009

    Article  CAS  PubMed  Google Scholar 

  18. Sato M, Uzu K, Yoshida T, Hamad EM, Kawakami H, Matsuyama H, Abd El-Gawad IA, Imaizumi K (2008) Effects of milk fermented by Lactobacillus gasseri SBT2055 on adipocyte size in rats. Br J Nutr 99(5):1013–1017. https://doi.org/10.1017/S0007114507839006

    Article  CAS  PubMed  Google Scholar 

  19. Adams CA (2010) The probiotic paradox: live and dead cells are biological response modifiers. Nutr Res Rev 23(1):37–46. https://doi.org/10.1017/S0954422410000090

    Article  CAS  PubMed  Google Scholar 

  20. Damodharan K, Lee YS, Palaniyandi SA, Yang SH, Suh JW (2015) Preliminary probiotic and technological characterization of Pediococcus pentosaceus strain KID7 and in vivo assessment of its cholesterol-lowering activity. Front Microbiol 6:768. https://doi.org/10.3389/fmicb.2015.00768

    Article  PubMed  PubMed Central  Google Scholar 

  21. Tsujino K, Li JT, Tsukui T, Ren X, Bakiri L, Wagner E, Sheppard D (2017) Fra-2 negatively regulates postnatal alveolar septation by modulating myofibroblast function. Am J Physiol Lung Cell Mol Physiol 313(5):L878–L888. https://doi.org/10.1152/ajplung.00062.2017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Yang F, Zhou L, Song J, WangJinMei A, Yang Y, Tang ZW, Huang QY (2019) Liver CEBPβ modulates the kynurenine metabolism and mediates the motility for hypoxia-induced central fatigue in mice. Front Physiol 10:243. https://doi.org/10.3389/fphys.2019.00243

    Article  PubMed  PubMed Central  Google Scholar 

  23. Park E, Lee CG, Jeong H, Yeo S, Kim JA, Jeong SY (2020) Antiadipogenic effects of mixtures of Cornus officinalis and Ribes fasciculatum extracts on 3T3-L1 preadipocytes and high-fat diet-induced mice. Mol 25(10):2350. https://doi.org/10.3390/molecules25102350

    Article  CAS  Google Scholar 

  24. Noh HL, Okajima K, Molkentin JD, Homma S, Goldberg IJ (2006) Acute lipoprotein lipase deletion in adult mice leads to dyslipidemia and cardiac dysfunction. Am J Physiol Endocrinol Metab 291(4):E755-760. https://doi.org/10.1152/ajpendo.00111.2006

    Article  CAS  PubMed  Google Scholar 

  25. Kinugawa K, Monnet Y, Lu L, Bekaert AJ, Thery C, Mallat Z, Hirsch EC, Hunot S (2013) MFGE8 does not orchestrate clearance of apoptotic neurons in a mouse model of Parkinson’s disease. Neurobiol Dis 51:192–201. https://doi.org/10.1016/j.nbd.2012.11.010

    Article  CAS  PubMed  Google Scholar 

  26. Li J, Ding L, Song B, Xiao X, Qi M, Yang Q, Yang Q, Tang X, Wang Z, Yang L (2016) Emodin improves lipid and glucose metabolism in high fat diet-induced obese mice through regulating SREBP pathway. Eur J Pharmacol 770:99–109. https://doi.org/10.1016/j.ejphar.2015.11.045

    Article  CAS  PubMed  Google Scholar 

  27. Fukumitsu S, Aida K, Ueno N, Ozawa S, Takahashi Y, Kobori M (2008) Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice. Br J Nutr 100(3):669–676. https://doi.org/10.1017/S0007114508911570

    Article  CAS  PubMed  Google Scholar 

  28. Morrison CJ, Butler GS, Bigg HF, Roberts CR, Soloway PD, Overall CM (2001) Cellular activation of MMP-2 (gelatinase A) by MT2-MMP occurs via a TIMP-2-independent pathway. J Biol Chem 276(50):47402–47410. https://doi.org/10.1074/jbc.M108643200

    Article  CAS  PubMed  Google Scholar 

  29. Schneeberger M, Everard A, Gomez-Valades AG, Matamoros S, Ramirez S, Delzenne NM, Gomis R, Claret M, Cani PD (2015) Akkermansia muciniphila inversely correlates with the onset of inflammation, altered adipose tissue metabolism and metabolic disorders during obesity in mice. Sci Rep 5:16643. https://doi.org/10.1038/srep16643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lee CS, Tan PL, Eor JY, Choi DH, Park M, Seo SK, Yoon S, Yang S, Kim SH (2019) Prophylactic use of probiotic chocolate modulates intestinal physiological functions in constipated rats. J Sci Food Agric 99(6):3045–3056. https://doi.org/10.1002/jsfa.9518

    Article  CAS  PubMed  Google Scholar 

  31. Hardwick SA, Stokes HW, Findlay S, Taylor M, Gillings MR (2008) Quantification of class 1 integron abundance in natural environments using real-time quantitative PCR. FEMS Microbiol Lett 278(2):207–212. https://doi.org/10.1111/j.1574-6968.2007.00992.x

    Article  CAS  PubMed  Google Scholar 

  32. Rokholm B, Baker JL, Sorensen TI (2010) The levelling off of the obesity epidemic since the year 1999-a review of evidence and perspectives. Obes Rev 11(12):835–846. https://doi.org/10.1111/j.1467-789X.2010.00810.x

    Article  CAS  PubMed  Google Scholar 

  33. Isomaa B, Almgren P, Tuomi T, Forsén B, Lahti K, Nissen M, Taskinen MR, Groop L (2001) Cardiovascular morbidity and mortality associated with the metabolic syndrome. Diabetes Care 24(4):683–689. https://doi.org/10.2337/diacare.24.4.683

    Article  CAS  PubMed  Google Scholar 

  34. Kang JH, Yun SI, Park MH, Park JH, Jeong SY, Park HO (2013) Anti-obesity effect of Lactobacillus gasseri BNR17 in high-sucrose diet-induced obese mice. PLoS One 8(1):e54617. https://doi.org/10.1371/journal.pone.0054617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Aronsson L, Huang Y, Parini P, Korach-Andre M, Hakansson J, Gustafsson JA, Pettersson S, Arulampalam V, Rafter J (2010) Decreased fat storage by Lactobacillus paracasei is associated with increased levels of angiopoietin-like 4 protein (ANGPTL4). PLoS One 5(9). https://doi.org/10.1371/journal.pone.0013087

  36. Bjerg AT, Kristensen M, Ritz C, Holst JJ, Rasmussen C, Leser TD, Wellejus A, Astrup A (2014) Lactobacillus paracasei subsp paracasei L. casei W8 suppresses energy intake acutely. Appetite 82:111–118. https://doi.org/10.1016/j.appet.2014.07.016

    Article  PubMed  Google Scholar 

  37. Gutierrez DA, Puglisi MJ, Hasty AH (2009) Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Curr Diabetes Rep 9(1):26–32. https://doi.org/10.1007/s11892-009-0006-9

    Article  CAS  Google Scholar 

  38. Preiss D, Sattar N (2009) Lipids, lipid modifying agents and cardiovascular risk: a review of the evidence. Clin Endocrinol (Oxf) 70(6):815–828. https://doi.org/10.1111/j.1365-2265.2008.03490.x

    Article  CAS  Google Scholar 

  39. Carr SS, Hooper AJ, Sullivan DR, Burnett JR (2019) Non-HDL-cholesterol and apolipoprotein B compared with LDL-cholesterol in atherosclerotic cardiovascular disease risk assessment. Pathology 51(2):148–154. https://doi.org/10.1016/j.pathol.2018.11.006

    Article  CAS  PubMed  Google Scholar 

  40. Kwon J, Kim B, Lee C, Joung H, Kim BK, Choi IS, Hyun CK (2020) Comprehensive amelioration of high-fat diet-induced metabolic dysfunctions through activation of the PGC-1α pathway by probiotics treatment in mice. PLoS One 15(2):e0228932. https://doi.org/10.1371/journal.pone.0228932

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kim B, Kwon J, Kim MS, Park H, Ji Y, Holzapfel W, Hyun CK (2018) Protective effects of Bacillus probiotics against high-fat diet-induced metabolic disorders in mice. PLoS One 13(12):e0210120. https://doi.org/10.1371/journal.pone.0210120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Liang X, Zhang Z, Zhou X, Lu Y, Li R, Yu Z, Tong L, Gong P, Yi H, Liu T, Zhang L (2020) Probiotics improved hyperlipidemia in mice induced by a high cholesterol diet via downregulating FXR. Food Funct 11(11):9903–9911. https://doi.org/10.1039/d0fo02255a

    Article  CAS  PubMed  Google Scholar 

  43. Siersbaek R, Nielsen R, Mandrup S (2010) PPARγ in adipocyte differentiation and metabolism-novel insights from genome-wide studies. FEBS Lett 584(15):3242–3249. https://doi.org/10.1016/j.febslet.2010.06.010

    Article  CAS  PubMed  Google Scholar 

  44. Semple RK, Chatterjee VK, O’Rahilly S (2006) PPARγ and human metabolic disease. J Clin Invest 116(3):581–589. https://doi.org/10.1172/JCI28003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Linhart HG, Ishimura-Oka K, DeMayo F, Kibe T, Repka D, Poindexter B, Bick RJ, Darlington GJ (2001) C/EBPα is required for differentiation of white, but not brown, adipose tissue. Proc Natl Acad Sci 98(22):12532–12537. https://doi.org/10.1073/pnas.211416898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wu CW, Chu ES, Lam CN, Cheng AS, Lee CW, Wong VW, Sung JJ, Yu J (2010) PPARγ is essential for protection against nonalcoholic steatohepatitis. Gene Ther 17(6):790–798. https://doi.org/10.1038/gt.2010.41

    Article  CAS  PubMed  Google Scholar 

  47. Jang WY, Bae KB, Kim SH, Yu DH, Kim HJ, Ji YR, Park SJ, Park SJ, Kang MC, Jeong JI, Park SJ, Lee SG, Lee I, Kim MO, Yoon D, Ryoo ZY (2014) Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet. Biochem Biophys Res Commun 444(3):296–301. https://doi.org/10.1016/j.bbrc.2013.12.094

    Article  CAS  PubMed  Google Scholar 

  48. Tiraby C, Tavernier G, Capel F, Mairal A, Crampes F, Rami J, Pujol C, Boutin J, Langin D (2007) Resistance to high-fat-diet-induced obesity and sexual dimorphism in the metabolic responses of transgenic mice with moderate uncoupling protein 3 overexpression in glycolytic skeletal muscles. Diabetologia 50(10):2190–2199. https://doi.org/10.1007/s00125-007-0765-2

    Article  CAS  PubMed  Google Scholar 

  49. Chen N, Bezzina R, Hinch E, Lewandowski PA, Cameron-Smith D, Mathai ML, Jois M, Sinclair AJ, Begg DP, Wark JD (2009) Green tea, black tea, and epigallocatechin modify body composition, improve glucose tolerance, and differentially alter metabolic gene expression in rats fed a high-fat diet. Nutr Res 29(11):784–793. https://doi.org/10.1016/j.nutres.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  50. Ricquier D, Bouillaud F (2000) The uncoupling protein homologues: UCP1, UCP2, UCP3. StUCP AtUCP Biochem J 345(2):161–179. https://doi.org/10.1042/bj3450161

    Article  CAS  PubMed  Google Scholar 

  51. Bratlie M, Hagen IV, Helland A, Erchinger F, Midttun Ø, Ueland PM, Rosenlund G, Sveier H, Mellgren G, Hausken T, Gudbrandsen OQ (2020) Effects of high intake of cod or salmon on gut microbiota profile, faecal output and serum concentrations of lipids and bile acids in overweight adults: a randomised clinical trial. Eur J Nutr 2020:1–18. https://doi.org/10.1007/s00394-020-02417-8

    Article  CAS  Google Scholar 

  52. Cani PD, Delzenne NM (2009) The role of the gut microbiota in energy metabolism and metabolic disease. Curr Pharm Des 15(13):1546–1558. https://doi.org/10.2174/138161209788168164

    Article  CAS  PubMed  Google Scholar 

  53. Dewulf EM, Cani PD, Neyrinck AM, Possemiers S, Van Holle A, Muccioli GG, Deldicque L, Bindels LB, Pachikian BD, Sohet FM, Mignolet E, Francaux M, Larondelle Y, Delzenne NM (2011) Inulin-type fructans with prebiotic properties counteract GPR43 overexpression and PPARγ-related adipogenesis in the white adipose tissue of high-fat diet-fed mice. J Nutr Biochem 22(8):712–722. https://doi.org/10.1016/j.jnutbio.2010.05.009

    Article  CAS  PubMed  Google Scholar 

  54. Round JL, Mazmanian SK (2009) The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol 9(5):313–323. https://doi.org/10.1038/nri2515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Neyrinck AM, Possemiers S, Druart C, Van de Wiele T, De Backer F, Cani PD, Larondelle Y, Delzenne NM (2011) Prebiotic effects of wheat arabinoxylan related to the increase in Bifidobacteria, Roseburia and Bacteroides/Prevotella in diet-induced obese mice. PLoS One 6(6):e20944. https://doi.org/10.1371/journal.pone.0020944

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Eyupoglu ND, Ergunay K, Acikgoz A, Akyon Y, Yilmaz E, Yildiz BO (2020) Gut microbiota and oral contraceptive use in overweight and obese patients with polycystic ovary syndrome. J Clin Endocrinol Metab 105(12):e4792–e4800. https://doi.org/10.1210/clinem/dgaa600

    Article  Google Scholar 

  57. Everard A, Belzer C, Geurts L, Ouwerkerk JP, Druart C, Bindels LB, Guiot Y, Derrien M, Muccioli GG, Delzenne NM (2013) Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci 110(22):9066–9071. https://doi.org/10.1073/pnas.1219451110

    Article  PubMed  PubMed Central  Google Scholar 

  58. Shen W, Shen M, Zhao X, Zhu H, Yang Y, Lu S, Tan Y, Li G, Li M, Wang J, Hu F, Le S (2017) Anti-obesity effect of capsaicin in mice fed with high-fat diet is associated with an increase in population of the gut bacterium Akkermansia muciniphila Front Microbiol 8:272. https://doi.org/10.3389/fmicb.2017.00272

    Article  PubMed  PubMed Central  Google Scholar 

  59. Truchado P, Gil MI, Suslow T, Allende A (2018) Impact of chlorine dioxide disinfection of irrigation water on the epiphytic bacterial community of baby spinach and underlying soil. PLoS One 13(7):e0199291. https://doi.org/10.1371/journal.pone.0199291

    Article  PubMed  PubMed Central  Google Scholar 

  60. Alard J, Lehrter V, Rhimi M, Mangin I, Peucelle V, Abraham A-E, Mariadassou M, Maguin E, Waligora-Dupriet A-J, Pot B, Wolowczuk I, Grangette C (2016) Beneficial metabolic effects of selected probiotics on diet-induced obesity and insulin resistance in mice are associated with improvement of dysbiotic gut microbiota. Environ Microbiol 18(5):1484–1497. https://doi.org/10.1111/1462-2920.13181

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was financially supported by grants funded by the Chong Kun Dang Bio and Korea University Grant.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sae Hun Kim.

Ethics declarations

Ethics Approval

All procedures used in these experiments were approved by the Korea University Institutional Animal Care & Use Committee, South Korea (KUIACUC-2016-154).

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 23 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, C.S., Park, M.H., Kim, B.K. et al. Antiobesity Effect of Novel Probiotic Strains in a Mouse Model of High-Fat Diet–Induced Obesity. Probiotics & Antimicro. Prot. 13, 1054–1067 (2021). https://doi.org/10.1007/s12602-021-09752-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12602-021-09752-0

Keywords

Navigation