Skip to main content

Advertisement

Log in

Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia

  • Published:
Current Diabetes Reports Aims and scope Submit manuscript

Abstract

Obesity is associated with increased prevalence of metabolic disorders, such as inflammation, insulin resistance, and dyslipidemia, which can predispose an individual to develop diabetes and cardiovascular disease. Adipose tissue (AT) is now recognized as a metabolically active organ that controls plasma free fatty acid levels and contributes to systemic metabolic homeostasis by secreting adipokines. In obesity, the recruitment of immune cells, such as T cells and macrophages, to AT causes inflammation, which is thought to contribute to local insulin resistance. This loss of insulin sensitivity within AT can lead to uncontrolled release of fatty acids, secretion of inflammatory cytokines, and alterations in the balance of adipokines, which ultimately impact lipoprotein metabolism and insulin sensitivity systemically. Thus, AT itself plays an important role in the increased risk of diabetes and cardiovascular disease that is associated with obesity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. Weisberg SP, McCann D, Desai M, et al.: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003, 112:1796–1808.

    PubMed  CAS  Google Scholar 

  2. Xu H, Barnes G, Yang Q, et al.: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003, 112:1821–1830.

    PubMed  CAS  Google Scholar 

  3. Apovian CM, Bigomia S, Mott M, et al.: Adipose macrophage infiltration is associated with insulin resistance and vascular endothelial dysfunction in obese subjects. Arterioscler Thromb Vasc Biol 2008, 28:1654–1659.

    Article  PubMed  CAS  Google Scholar 

  4. Vitseva OI, Tanriverdi K, Tchkonia TT, et al.: Inducible toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity (Silver Spring) 2008, 16:932–937.

    Article  CAS  Google Scholar 

  5. Huber J, Kiefer FW, Zeyda M, et al.: CC chemokine and CC chemokine receptor profiles in visceral and subcutaneous adipose tissue are altered in human obesity. J Clin Endocrinol Metab 2008, 93:3215–3221.

    Article  PubMed  CAS  Google Scholar 

  6. Hosogai N, Fukuhara A, Oshima K, et al.: Adipose tissue hypoxia in obesity and its impact on adipocytokine dysregulation. Diabetes 2007, 56:901–911.

    Article  PubMed  CAS  Google Scholar 

  7. Ye J, Gao Z, Yin J, He Q: Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007, 293:E1118–E1128.

    Article  PubMed  CAS  Google Scholar 

  8. Cinti S, Mitchell G, Barbatelli G, et al.: Adipocyte death defines macrophage localization and function in adipose tissue of obese mice and humans. J Lipid Res 2005, 46:2347–2355.

    Article  PubMed  CAS  Google Scholar 

  9. Strissel KJ, Stancheva Z, Miyoshi H, et al.: Adipocyte death, adipose tissue remodeling, and obesity complications. Diabetes 2007, 56:2910–2918.

    Article  PubMed  CAS  Google Scholar 

  10. Kanda H, Tateya S, Tamori Y, et al.: MCP-1 contributes to macrophage infiltration into adipose tissue, insulin resistance, and hepatic steatosis in obesity. J Clin Invest 2006, 116:1494–1505.

    Article  PubMed  CAS  Google Scholar 

  11. Sartipy P, Loskutoff DJ: Monocyte chemoattractant protein 1 in obesity and insulin resistance. Proc Natl Acad Sci U S A 2003, 100:7265–7270.

    Article  PubMed  CAS  Google Scholar 

  12. Chen A, Mumick S, Zhang C, et al.: Diet induction of monocyte chemoattractant protein-1 and its impact on obesity. Obes Res 2005, 13:1311–1320.

    Article  PubMed  CAS  Google Scholar 

  13. Coenen KR, Gruen ML, Chait A, Hasty AH: Diet-induced increases in adiposity, but not plasma lipids, promote macrophage infiltration into white adipose tissue. Diabetes 2007, 56:564–573.

    Article  PubMed  CAS  Google Scholar 

  14. Weisberg SP, Hunter D, Huber R, et al.: CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest 2006, 116:115–124.

    Article  PubMed  CAS  Google Scholar 

  15. Inouye KE, Shi H, Howard JK, et al.: Absence of CC chemokine ligand 2 does not limit obesity-associated infiltration of macrophages into adipose tissue. Diabetes 2007, 56:2242–2250.

    Article  PubMed  CAS  Google Scholar 

  16. Kirk EA, Sagawa ZK, McDonald TO, et al.: Macrophage chemoattractant protein-1 deficiency fails to restrain macrophage infiltration into adipose tissue. Diabetes 2008, 57:1254–1261.

    Article  PubMed  CAS  Google Scholar 

  17. Kintscher U, Hartge M, Hess K, et al.: T-lymphocyte infiltration in visceral adipose tissue: a primary event in adipose tissue inflammation and the development of obesity-mediated insulin resistance. Arterioscler Thromb Vasc Biol 2008, 28:1304–1310.

    Article  PubMed  CAS  Google Scholar 

  18. Rausch ME, Weisberg S, Vardhana P, Tortoriello DV: Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes (Lond) 2008, 32:451–463.

    Article  CAS  Google Scholar 

  19. Wu H, Ghosh S, Perrard XD, et al.: T-cell accumulation and regulated on activation, normal T cell expressed and secreted upregulation in adipose tissue in obesity. Circulation 2007, 115:1029–1038.

    Article  PubMed  CAS  Google Scholar 

  20. Curat CA, Miranville A, Sengenes C, et al.: From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 2004, 53:1285–1292.

    Article  PubMed  CAS  Google Scholar 

  21. Gruen ML, Hao M, Piston DW, Hasty AH: Leptin requires canonical migratory signaling pathways for induction of monocyte and macrophage chemotaxis. Am J Physiol Cell Physiol 2007, 293:C1481–C1488.

    Article  PubMed  CAS  Google Scholar 

  22. Charriere G, Cousin B, Arnaud E, et al.: Preadipocyte conversion to macrophage. Evidence of plasticity. J Biol Chem 2003, 278:9850–9855.

    Article  PubMed  CAS  Google Scholar 

  23. Martinez FO, Sica A, Mantovani A, Locati M: Macrophage activation and polarization. Front Biosci 2008, 13:453–461.

    Article  PubMed  CAS  Google Scholar 

  24. Lumeng CN, Bodzin JL, Saltiel AR: Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007, 117:175–184.

    Article  PubMed  CAS  Google Scholar 

  25. Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR: Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007, 56:16–23.

    Article  PubMed  CAS  Google Scholar 

  26. Stienstra R, Duval C, Keshtkar S, et al.: Peroxisome proliferator-activated receptor gamma activation promotes infiltration of alternatively activated macrophages into adipose tissue. J Biol Chem 2008, 283:22620–22627.

    Article  PubMed  CAS  Google Scholar 

  27. Odegaard JI, Ricardo-Gonzalez RR, Red Eagle A, et al.: Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesity-induced insulin resistance. Cell Metab 2008, 7:496–507.

    Article  PubMed  CAS  Google Scholar 

  28. Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al.: Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007, 447:1116–1120.

    Article  PubMed  CAS  Google Scholar 

  29. Hotamisligil GS: Inflammatory pathways and insulin action. Int J Obes Relat Metab Disord 2003, 27(Suppl 3):S53–S55.

    Article  PubMed  CAS  Google Scholar 

  30. Souza SC, Palmer HJ, Kang YH, et al.: TNF-alpha induction of lipolysis is mediated through activation of the extracellular signal related kinase pathway in 3T3-L1 adipocytes. J Cell Biochem 2003, 89:1077–1086.

    Article  PubMed  CAS  Google Scholar 

  31. Uysal KT, Wiesbrock SM, Marino MW, Hotamisligil GS: Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature 1997, 389:610–614.

    Article  PubMed  CAS  Google Scholar 

  32. Hotamisligil GS, Murray DL, Choy LN, Spiegelman BM: Tumor necrosis factor alpha inhibits signaling from the insulin receptor. Proc Natl Acad Sci U S A 1994, 91:4854–4858.

    Article  PubMed  CAS  Google Scholar 

  33. Hoene M, Weigert C: The role of interleukin-6 in insulin resistance, body fat distribution and energy balance. Obes Rev 2008, 9:20–29.

    PubMed  CAS  Google Scholar 

  34. Perreault M, Marette A: Targeted disruption of inducible nitric oxide synthase protects against obesity-linked insulin resistance in muscle. Nat Med 2001, 7:1138–1143.

    Article  PubMed  CAS  Google Scholar 

  35. Toyoda T, Kamei Y, Kato H, et al.: Effect of peroxisome proliferator-activated receptor-alpha ligands in the interaction between adipocytes and macrophages in obese adipose tissue. Obesity (Silver Spring) 2008, 16:1199–1207.

    Article  CAS  Google Scholar 

  36. Suganami T, Nishida J, Ogawa Y: A paracrine loop between adipocytes and macrophages aggravates inflammatory changes. role of free fatty acids and tumor necrosis factor alpha. Arterioscler Thromb Vasc Biol 2005, 25:2062–2068.

    Article  PubMed  CAS  Google Scholar 

  37. Suganami T, Tanimoto-Koyama K, Nishida J, et al.: Role of the toll-like receptor 4/NF-kappaB pathway in saturated fatty acid-induced inflammatory changes in the interaction between adipocytes and macrophages. Arterioscler Thromb Vasc Biol 2007, 27:84–91.

    Article  PubMed  CAS  Google Scholar 

  38. Unger RH, Zhou YT, Orci L: Regulation of fatty acid homeostasis in cells: novel role of leptin. Proc Natl Acad Sci U S A 1999, 96:2327–2332.

    Article  PubMed  CAS  Google Scholar 

  39. Tomas E, Tsao TS, Saha AK, et al.: Enhanced muscle fat oxidation and glucose transport by ACRP30 globular domain: acetyl-CoA carboxylase inhibition and AMP-activated protein kinase activation. Proc Natl Acad Sci U S A 2002, 99:16309–16313.

    Article  PubMed  CAS  Google Scholar 

  40. Engfeldt P, Arner P: Lipolysis in human adipocytes, effects of cell size, age and of regional differences. Horm Metab Res Suppl 1988, 19:26–29.

    PubMed  CAS  Google Scholar 

  41. Sam S, Haffner S, Davidson MH, et al.: Relationship of abdominal visceral and subcutaneous adipose tissue with lipoprotein particle number and size in type 2 diabetes. Diabetes 2008, 57:2022–2027.

    Article  PubMed  CAS  Google Scholar 

  42. Fontana L, Eagon JC, Trujillo ME, et al.: Visceral fat adipokine secretion is associated with systemic inflammation in obese humans. Diabetes 2007, 56:1010–1013.

    Article  PubMed  CAS  Google Scholar 

  43. Phillips SA, Ciaraldi TP, Oh DK, et al.: Adiponectin secretion and response is depot-dependent in cultured human adipose tissue. Am J Physiol Endocrinol Metab 2008, 295:E842–E850.

    Article  PubMed  CAS  Google Scholar 

  44. Cancello R, Tordjman J, Poitou C, et al.: Increased infiltration of macrophages in omental adipose tissue is associated with marked hepatic lesions in morbid human obesity. Diabetes 2006, 55:1554–1561.

    Article  PubMed  CAS  Google Scholar 

  45. Jovinge S, Hamsten A, Tornvall P, et al.: Evidence for a role of tumor necrosis factor alpha in disturbances of triglyceride and glucose metabolism predisposing to coronary heart disease. Metabolism 1998, 47:113–118.

    Article  PubMed  CAS  Google Scholar 

  46. Bartolome N, Rodriguez L, Martinez MJ, et al.: Upregulation of apolipoprotein B secretion, but not lipid, by tumor necrosis factor-alpha in rat hepatocyte cultures in the absence of extracellular fatty acids. Ann N Y Acad Sci 2007, 1096:55–69.

    Article  PubMed  CAS  Google Scholar 

  47. Qin B, Anderson RA, Adeli K: Tumor necrosis factor-alpha directly stimulates the overproduction of hepatic apolipoprotein B100-containing VLDL via impairment of hepatic insulin signaling. Am J Physiol Gastrointest Liver Physiol 2008, 294:G1120–G1129.

    Article  PubMed  CAS  Google Scholar 

  48. Qin B, Qiu W, Avramoglu RK, Adeli K: Tumor necrosis factor-alpha induces intestinal insulin resistance and stimulates the overproduction of intestinal apolipoprotein B48-containing lipoproteins. Diabetes 2007, 56:450–461.

    Article  PubMed  CAS  Google Scholar 

  49. O’Brien KD, Chait A: Serum amyloid A: the “other” inflammatory protein. Curr Atheroscler Rep 2006, 8:62–68.

    Article  PubMed  CAS  Google Scholar 

  50. Poitou C, Viguerie N, Cancello R, et al.: Serum amyloid A: production by human white adipocyte and regulation by obesity and nutrition. Diabetologia 2005, 48:519–528.

    Article  PubMed  CAS  Google Scholar 

  51. Chen CH, Wang PH, Liu BH, et al.: Serum amyloid A protein regulates the expression of porcine genes related to lipid metabolism. J Nutr 2008, 138:674–679.

    Article  PubMed  CAS  Google Scholar 

  52. Cai L, de Beer MC, de Beer FC, van der Westhuyzen DR: Serum amyloid A is a ligand for scavenger receptor class B type I and inhibits high density lipoprotein binding and selective lipid uptake. J Biol Chem 2005, 280:2954–2961.

    Article  PubMed  CAS  Google Scholar 

  53. Lewis KE, Kirk EA, McDonald TO, et al.: Increase in serum amyloid a evoked by dietary cholesterol is associated with increased atherosclerosis in mice. Circulation 2004, 110:540–545.

    Article  PubMed  CAS  Google Scholar 

  54. Cnop M, Havel PJ, Utzschneider KM, et al.: Relationship of adiponectin to body fat distribution, insulin sensitivity and plasma lipoproteins: evidence for independent roles of age and sex. Diabetologia 2003, 46:459–469.

    PubMed  CAS  Google Scholar 

  55. Yamauchi T, Kamon J, Minokoshi Y, et al.: Adiponectin stimulates glucose utilization and fatty-acid oxidation by activating AMP-activated protein kinase. Nat Med 2002, 8:1288–1295.

    Article  PubMed  CAS  Google Scholar 

  56. Berneis KK, Krauss RM: Metabolic origins and clinical significance of LDL heterogeneity. J Lipid Res 2002, 43:1363–1379.

    Article  PubMed  CAS  Google Scholar 

  57. Saraswathi V, Gao L, Morrow JD, et al.: Fish oil increases cholesterol storage in white adipose tissue with concomitant decreases in inflammation, hepatic steatosis, and atherosclerosis in mice. J Nutr 2007, 137:1776–1782.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alyssa H. Hasty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gutierrez, D.A., Puglisi, M.J. & Hasty, A.H. Impact of increased adipose tissue mass on inflammation, insulin resistance, and dyslipidemia. Curr Diab Rep 9, 26–32 (2009). https://doi.org/10.1007/s11892-009-0006-9

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11892-009-0006-9

Keywords

Navigation